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Abstract

We consider domains with weak preferences and provide the structure of unanimous and strategy-

proof random social choice functions on these domains. We begin with weak single-peaked domains

and provide a characterization of Pareto optimal and strategy-proof random functions on these domains.

Next, we consider single-plateaued domains. First, we show that every unanimous and strategy-proof

random social choice function on such domains satisfies Pareto optimality and almost plateau-onlyness,

and then provide an axiomatic characterization of these functions. We also provide a functional form

characterization of anonymous, plateau-only, and strategy-proof random social choice functions on the

single-plateaued domains under some restrictions on the plateau size.
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1. INTRODUCTION

We consider the standard social choice problem where a social planner has to choose an alternative from

a feasible set based on the preferences of the agents in a society. Unanimity, Pareto optimality, strategy-

proofness are considered as desirable properties of a deterministic social choice function (DSCF). A DSCF
∗Contact: madhuparnakarmokar@yahoo.in
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is unanimous if, whenever all agents agree on their top-ranked alternative, that alternative is chosen. It is

Pareto efficient if its outcome cannot be improved in way so that no one is worse off and someone is better

off. It is strategy-proof if no agent can benefit by misreporting her preference.

The horizon of social choice theory is expanded by introducing randomness in social choice functions.

A random social choice function (RSCF) selects a probability distribution over the alternatives at every

collection of preferences. The notions of unanimity and Pareto optimality remain the same for RSCFs,

while that of strategy-proofness is formulated by means of stochastic dominance.

Importance of RSCFs over DSCFs is well-established in the literature (see Peters et al. (2017), Peters et al.

(2014) and Ehlers et al. (2002)). The appeal of RSCFs over DSCFs is that they allow for the introduction

of fairness considerations and reasonable compromise in the decision-making process, facilitating the

resolution of conflicts of interest (see Nandeibam (2013) and Picot and Sen (2012)). Apart from providing

fair outcomes (see Ehlers et al. (2002) for details), they also increase the ex-ante welfare of a society over

DSCFs.

A preference is strict if it does not admit any indifference. The study of social choice functions when

preferences are strict is quite extensive. In a seminal work, Gibbard et al. (1977) shows that an RSCF

on the strict unrestricted domain is unanimous and strategy-proof if and only if it is random dictatorial.

Subsequently, several other random dictatorial domains are characterized in the literature. For domains

with specific structure, unanimous and strategy-proof RSCFs on the strict single-peaked domain, the strict

single-dipped domain, and strict single-crossing domains are characterized (see Ehlers et al. (2002), Peters

et al. (2017), Roy and Sadhukhan (2021)).

To our understanding, the assumption of strict preferences is quite strong for practical purposes. It is a

well-established fact that individuals’ preferences admit indifferences. However, contrary to their strict

counterpart, the literature of social choice theory for weak preferences is rather limited. Our objective of

this paper is to explore this area of social choice for weak preferences.

Next, we analyze what happens when weak preferences are added to well-known restricted domains. We

consider two types of weak domains in this context: one where indifference occurs only at the top-position,

and the other one where it occurs only below the top-position. An important weak domain of the former type

is the single-plateaued domain and that of the latter type is the single-peaked domain with outside option.

We provide the structure of unanimous (or Pareto optimal) and strategy-proof RSCFs for each of these

cases. Berga (1998) provide the structure of unanimous and strategy-proof DSCFs on the single-plateaued

domain and Cantala (2004) provide that for the single-peaked domain with outside option. We generalize

these results for RSCFs. Also, we provide closed form presentation of these rules.
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In Section 2 we introduce the basic model, notations and definitions. In Section 3 we characterize

the Pareto efficient and strategy-proof RSCFs as extreme PFBRs on weak single-peaked domains. In

Section 4 we consider single-plateaued domains and show that every unanimous and strategy-proof random

social choice function on such domains satisfies Pareto optimality and almost plateau-onlyness, and then

provide an axiomatic characterization of these functions. We also provide a functional form characterization

of anonymous, plateau-only, and strategy-proof random social choice functions on the single-plateaued

domains under some restrictions on the plateau size. In Section 5 we provide the conclusion.

2. PRELIMINARIES

Let N = {1, . . . ,n} be a set of at least two agents, who collectively choose an element from a finite

set A = {1, . . . ,m} of at least two alternatives. For x,y ∈ A such that x ≤ y, we define the intervals

[x,y] = {z∈ A | x≤ z≤ y}, [x,y) = [x,y]\{y}, (x,y] = [x,y]\{x}, and (x,y) = [x,y]\{x,y}. For notational

convenience, whenever it is clear from the context, we do not use braces for singleton sets, i.e., we denote

sets {i} by i. A (weak) preference R over A is a complete and transitive binary relation (also called a weak

order) defined on A. We denote by P and I the anti-symmetric and the indifference part of R, respectively.

That is, xPy means xRy and not yRx, and xIy means xRy and yRx. We denote by W(A) the set of all

preferences over A. For a preference R ∈W(A), we denote by τ(R) the set of alternatives that appear at the

top-position of R, that is, τ(R) = {x ∈ A | xRy for all y ∈ A}. For a preference R ∈W(A) and an alternative

x, the upper contour set U(x,R) of R at x is defined as the set of alternatives that are (weakly) preferred to x

at R, that is, U(x,R) = {y ∈ A | yRx}. An antisymmetric preference is called strict preference. We denote a

strict preference by P.

We denote a set of admissible preferences of an agent i by Di, and a set of admissible strict preferences

by D̂i. Let DN = ∏i∈N Di. An element of DN is called a preference profile. For ease of presentation, we

refer to sets Di and DN as domains, and sets D̂i and D̂N as strict domains. Furthermore, for a domain Di or

DN , we denote by strict(Di) and strict(DN) the set of strict preferences in Di and DN , respectively.

A random social choice function assigns a probability distribution over the alternatives at each preference

profile.

Definition 2.1. A random social choice function (RSCF) ϕ on DN is a mapping ϕ : DN → ∆A.

Unanimity says that whenever all the agents in a society have some alternative(s) common in their top

position, those alternatives are chosen with probability 1.
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Definition 2.2. An RSCF ϕ : DN→ ∆A is unanimous if for all RN ∈DN such that ∩i∈Nτ(Ri) 6= /0, we have

∑x∈∩i∈Nτ(Ri) ϕx(RN) = 1.

We say an alternative x Pareto dominates another alternative y at a preference profile RN if every agent

weakly prefers x to y and some agent strictly prefers x to y, that is, xRiy for all i ∈ N and xPiy for some

i ∈ N. An alternative is said to be Pareto dominated if some other alternative Pareto dominates it. Pareto

optimality says that a Pareto dominated alternative cannot be selected with positive probability.

Definition 2.3. An RSCF ϕ : DN→ ∆A satisfies Pareto optimality if for all RN ∈DN , we have ϕx(DN) = 0

for all x ∈ A such that x is Pareto dominated at RN .

An RSCF is strategy-proof if no agent can increase the probability of any upper contour set by misre-

porting his/her preferences.

Definition 2.4. An RSCF ϕ : DN → ∆A is called strategy-proof if for all i ∈ N, (Ri,RN\i) ∈DN , R′i ∈Di,

and x ∈ A

∑
y∈U(x,Ri)

ϕy(Ri,RN\i) ≥ ∑
y∈U(x,Ri)

ϕy(R′i,RN\i).

REMARK 2.1. An RSCF is called a deterministic social choice function (DSCF) if it selects a degenerate

probability distribution at every preference profile. More formally, an RSCF ϕ : DN → ∆A is called a

DSCF if ϕa(RN) ∈ {0,1} for all a ∈ A and all RN ∈DN . The notions of unanimity, Pareto optimality, and

strategy-proofness for DSCFs are special cases of the corresponding definitions for RSCFs.

3. RANDOM RULES ON SINGLE-PEAKED DOMAINS

In this section, we consider single-peaked domains and provide a characterization of Pareto optimal and

strategy-proof RSCFs on these domains.

A preference is called single-peaked if there is a unique top-ranked alternative such that preference

weakly declines as one moves away from the top-ranked alternative in any direction.

Definition 3.1. A preference R is called single-peaked if it has a unique top-ranked alternative τ(R),

called the peak, such that for all a,b ∈ A, b < a < τ(R) or τ(R)< a < b implies aRb. A domain is called

single-peaked if each preference in it is single-peaked.

A single-peaked preference is called strict single-peaked if it does not contain any indifference. A

domain is called strict single-peaked if each preference in it is strict single-peaked.
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Next, we introduce the notion of probabilistic fixed ballot rules. We need the following terminology. For

a preference profile RN and an alternative x, we denote the set of agents whose peaks are on the right of x

by S(x,RN), that is, S(x,RN) = {i ∈ N | τ(Ri) ≥ x}.

Definition 3.2. An RSCF ϕ : DN → ∆A is called a probabilistic fixed ballot rule if for all S ⊆ N, there

exists βS ∈ ∆A satisfying

(i) βN(m) = 1 and β /0(1) = 1, and

(ii) βS([x,m])≤ βT ([x,m]) for all S⊆ T and all x ∈ A

such that for all RN ∈DN and all x ∈ A, we have

ϕx(RN) = βS(x,RN)[x,m]−βS(x+1,RN)[x+ 1,m],

where βS(m+1,RN)[m+ 1,m] ≡ 0.

Finally, we introduce the notion of extreme PFBRs. These are special cases of PFBRs where each βS

assigns positive probabilities only to the “extreme” alternatives 1 and m.

Definition 3.3. A PFBR with respect to parameters (βS)S⊆N is called extreme if βS(x) > 0 implies

x ∈ {1,m}.

A single-peaked preference R is called left dichotomous if τ(R) = 1 and 2Im. In other words, except

from alternative 1, which is ranked top at R, all other alternatives are indifferent to each other. Similarly, a

preference R′ is called right dichotomous if τ(R′) =m and (m−1)I′1. A single-peaked domain is minimally

rich if it contains all strict single-peaked preferences, the left dichotomous, and the right dichotomous

preference. Our next theorem says that every Pareto optimal and strategy-proof RSCF on the single-peaked

domain is an extreme PFBR. Cantala (2004) considers the single-peaked domain with outside options and

characterizes Pareto optimal and strategy-proof DSCFs on those domain.1 The single-peaked domains with

outside option are special cases of minimally rich weak single-peaked domains, and hence a characterization

of Pareto optimal and strategy-proof RSCFs on those domains follows as a corollary of our result.

Theorem 3.1. Let Di be a minimally rich single-peaked domain for each i ∈ N. An RSCF ϕ : DN → ∆A is

Pareto optimal and strategy-proof if and only if it is an extreme PFBR.

The proof of the theorem is relegated to Appendix A.
1A preference is single-peaked with outside options if there is a region around the peak such that the preference exhibits

single-peakedness over the alternatives in that region and indifference over the ones outside it.
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4. RANDOM RULES ON SINGLE-PLATEAUED DOMAINS

In this section, we introduce the notion of single-plateaued preferences. For these preferences, an interval

of alternatives appear at the top-position, and as one go far from this interval (in any particular direction),

preference declines strictly. Moreover, indifference occurs only at the top-position for such a preference.

Note that single-plateaued preferences are the counter part of weak single-peaked preferences in the sense

that for the former, indifference can occur only at the top, whereas for the latter, it can occur only below the

top.

Throughout this section, we assume that admissible preferences are the same across agents.

Definition 4.1. A preference R ∈W(A) is called single-plateaued if there exist x,y ∈ A with x < y such

that

(i) τ(R) = [x,y],

(ii) for all u,v ∈ A, [u < v≤ x or y≤ v < u] implies vPu, and

(iii) for all u,v /∈ [x,y], either uPv or vPu.

In what follows, we introduce some particular type of single-plateaued preferences based on the size of

the plateau.

Definition 4.2. For 1 ≤ κ1 ≤ κ2 < m, a single-plateaued preference R ∈W(A) is called (κ1,κ2)-single-

plateaued if κ1 ≤ |τ(R)| ≤ κ2. A domain is called (κ1,κ2)-single-plateaued domain if it contains all

(κ1,κ2)-single-plateaued preferences.

For a single-plateaued preference R, we denote by τ+(R) and τ−(R) the right-end point and the left

end-point of the plateau, respectively. More formally, if τ(R) = [x,y], then τ+(R) = y and τ−(R) = x.

4.1 EQUIVALENCE OF UNANIMITY AND PARETO OPTIMALITY UNDER STRATEGY-

PROOFNESS

In this section, we introduce the concepts of unanimity and Pareto optimality. Unanimity is a weaker

notion of Pareto optimality, however we show that under strategy-proofness they are equivalent on a

single-plateaued domain. It is worth mentioning that the same result holds on a single-peaked domain (see

Moulin (1980) and Weymark (2011)).
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From this section onward, we assume that all the agents have the same set of admissible preferences.

Our next theorem says that unanimity and Pareto optimality are equivalent for a strategy-proof RSCF on

a (κ1,κ2)-single-plateaued domain.

Theorem 4.1. Let 1≤ κ1≤ κ2≤m and let D be a (κ1,κ2)-single-plateaued domain. Suppose ϕ : Dn→∆A

is a strategy-proof RSCF. Then, ϕ is unanimous if and only if it is Pareto optimal.

The proof of the theorem is relegated to Appendix B.

4.2 UNANIMITY AND ALMOST PLATEAU-ONLYNESS

In this section, we analyze the connection between unanimity and a weaker version of plateau-onlyness

called almost plateau-onlyness in the presence of strategy-proofness. An RSCF is called plateau-only if its

outcome depends only on the plateaus at a preference profile.

Definition 4.3. An RSCF ϕ : Dn→∆A is called plateau-only if for any two preference profiles RN ,R′N ∈Dn,

τ(Ri) = τ(R′i) for all i ∈ N implies ϕ(RN) = ϕ(R′N).

On single-peaked domains, peaks-onlyness and unanimity are equivalent for random rules under strategy-

proofness (Moulin (1980) and Weymark (2011)). However, as the following example suggests, the same

does not hold even for deterministic rules on single-plateaued domains when peaks-onlyness is replaced by

plateau-onlyness.

Example 4.1. Consider the DSCF, say f , given in Table 1. It can be verified that ϕ is unanimous and

strategy-proof. However, since τ([23]14) = τ([23]41) and f ([23]14, [123]4) 6= f ([23]41, [123]4), it is not

plateau-only. �

It is worth noting from Example 4.1 that if an agent changes his/her preference maintaining his/her

plateau, then unanimity and strategy-proofness can never rule out the possibility of rearranging the proba-

bilities of the alternatives in the plateau. In view of this fact, we weaken the notion of plateau-onlyness by

almost plateau-onlyness. It says that if an agent changes his/her preference maintaining his/her plateau,

then the probability of any alternative that lies outside his/her plateau must remain the same. In other words,

the only change that can happen by this change of preference is that the probabilities of the alternatives in

his/her plateau are rearranged.

Definition 4.4. An RSCF ϕ : Dn→ ∆A is called almost plateau-only if for any two preference profiles

(Ri,RN\i), (R′i,RN\i) ∈Dn, τ(Ri) = τ(R′i) implies ϕx(Ri,RN\i) = ϕx(R′i,RN\i) for all x /∈ τ(Ri).
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1 2 1234 2134 2314 3214 3421 4321 [12]34 [23]14 [23]41 [34]21 [123]4 [234]1

1234 1 2 2 2 2 2 1 2 2 2 1 2
2134 2 2 2 2 2 2 2 2 2 2 2 2
2314 2 2 2 2 2 2 2 2 2 2 2 2
3214 2 2 2 3 3 3 3 3 3 3 3 3
3421 2 2 2 3 3 3 3 3 3 3 3 3
4321 2 2 2 3 3 4 2 3 3 4 3 4
[12]34 1 2 2 3 3 2 1 2 2 2 2 2
[23]14 2 2 2 3 3 3 2 3 2 3 3 2
[23]41 2 2 2 3 3 3 2 2 3 3 2 3
[34]21 2 2 2 3 3 4 2 3 3 4 3 3
[123]4 1 2 2 3 3 3 1 3 2 3 1 3
[234]1 2 2 2 3 3 4 2 3 2 4 2 3

Table 1

Theorem 4.2. Let 1≤ κ1 ≤ κ2 ≤ m and let D be a (κ1,κ2)-single-plateaued domain. Let D be a (κ1,κ2)-

single-plateaued domain and let ϕ : Dn→ ∆A be a unanimous and strategy-proof RSCF. Then, ϕ is almost

plateau-only.

The proof of the theorem is relegated to Appendix C.

4.3 A CHARACTERIZATION OF UNANIMOUS AND STRATEGY-PROOF RULES ON

ARBITRARY SINGLE-PLATEAUED DOMAINS

In this section, we provide a characterization of unanimous and strategy-proof RSCFs on arbitrary single-

plateaued domains. We do this by identifying a property called generalized uncompromisingness of such

rules. As the name suggests, this property is a generalization of the uncompromisingness property that

exists in the literature in the context of single-peaked domains.

The notion of generalized uncompromisingness turns out to be relatively simpler for DSCFs. To help

the reader, we first present this notion for DSCFs.

A DSCF satisfies generalized uncompromisingness if the following happens. Whenever an agent

unilaterally moves his/her plateau in some direction, (i) if both the plateaus lie either strictly on the right of

the outcome or strictly on the left of the outcome of the DSCF, then the outcome does not change, and (ii)

if the right-end point or the left-end point of the plateau crosses the outcome, then the outcome moves in

the direction to which the plateau has moved.

Definition 4.5. An DSCF f : Dn→ A satisfies generalized uncompromisingness if for all Ri,R′i ∈D , and

all RN\i ∈Dn−1, we have

(i) [ f (RN), f (R′N) ≤min{τ−(Ri),τ−(R′i)}] or [max{τ+(Ri),τ+(R′i)} ≤ f (RN), f (R′N)], and
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(ii) [τ+(Ri) < f (RN) ≤ τ+(R′i)] or [τ−(Ri) < f (RN) ≤ τ−(R′i)] implies f (RN) ≤ f (R′i,RN\i).

We illustrate the notion of generalized uncompromisingness by means of the following example. It

should be noted that DSCFs satisfying generalized uncompromisingness can be constructed in a relatively

easy manner.

Example 4.2. Let the set of alternatives be A = {1,2,3,4,5} and suppose that there are two agents

N = {1,2}. We consider an arbitrary single-plateaued domain D . In Table 2, we present a DSCF,

say f , that satisfies generalized uncompromisingness. To see that f satisfies part (i) of generalized

uncompromisingness, consider, for instance, the preference profiles (12345, [23]145) and (12345, [45]321).

Note that agent 2 changes his/her plateau from [23] to [45] from the former preference profile to the latter.

The outcome at the former preference profile is 1, which lies strictly on the left of both the plateaus [23]

and [45]. As required by (i), the outcome at the latter preference profile is also 1. To see that f satisfies part

(ii) of generalized uncompromisingness, consider, for instance, the preference profiles ([123]45, [123]45)

and ([123]45, [45]321). Note that the outcome at the former preference profile is 2, which lies (weakly)

on the right of the former plateau 1 and strictly on the left of the latter plateau 4. As required by (ii), the

outcome moves to its right from 2 to 3. It is worth mentioning that although the DSCF in this example is

chosen to be unanimous, unanimity is not implied by generalized uncompromisingness. Later, we will

make a formal remark to emphasize this fact. �

1 2 12345 [123]45 [23]145 [23]451 [234]51 32145 34521 [3245]1 [45]321 43215 43521 54321

12345 1 1 1 1 1 1 1 1 1 3 1 1

[123]45 1 2 3 3 3 3 3 3 3 3 3 3

[23]145 1 3 2 2 2 3 3 3 3 3 3 3

[23]451 1 3 2 2 2 3 3 3 3 3 3 3

[234]51 1 3 2 2 4 3 3 4 4 4 4 4

32145 1 3 3 3 3 3 3 3 3 3 3 3

34521 1 3 3 3 3 3 3 3 3 3 3 3

[3245]1 1 3 3 3 4 3 3 2 4 4 4 5

[45]321 1 3 3 3 4 3 3 4 4 4 4 5

43215 1 3 3 3 4 3 3 4 4 4 4 4

43521 1 3 3 3 4 3 3 4 4 4 4 4

54321 1 3 3 3 4 3 3 5 5 4 4 5

Table 2

Now, we present the notion of generalized uncompromisingness for RSCFs. It says that whenever an

agent unilaterally moves his/her plateau in some direction, (i) if, for an alternative x, both the plateaus lie

either strictly on the right of it or strictly on the left of it, then the probability of x does not change, and (ii)
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the probability of an interval [x,m], where x lies in exactly one of the two plateaus, will weakly increase. In

our formal definition, we present (i) by means of probabilities of sets of the form [x,m], one can verify that

it means exactly what we have explained above.

Definition 4.6. An RSCF ϕ : Dn→ ∆A satisfies generalized uncompromisingness if for all Ri,R′i ∈D , all

RN\i ∈Dn−1, and all x ∈ A, we have

(i) [x≤min{τ−(Ri),τ−(R′i)}] or [max{τ+(Ri),τ+(R′i)}< x] implies ϕ[x,m](R
′
i,RN\i) =ϕ[x,m](Ri,RN\i),

and

(ii) [τ+(Ri) < x≤ τ+(R′i)] or [τ−(Ri) < x≤ τ−(R′i)] implies ϕ[x,m](R
′
i,RN\i) ≥ ϕ[x,m](Ri,RN\i).

REMARK 4.1. Note that as we have mentioned in the introduction of Definition 4.5, part (i) of generalized

uncompromisingness implies that for all (Ri,RN\i) ∈Dn, all i ∈ N, and all R′i ∈D , we have ϕx(Ri,RN\i) =

ϕx(R′i,RN\i) for all x ∈ A such that either x < {τ−(Ri),τ−(R′i)} or x > max{τ+(Ri),τ+(R′i)}.

REMARK 4.2. It is worth noting that the notion of generalized uncompromisingness coincides with that of

uncompromisingness (Moulin (1980)) if we assume τ+(R) = τ−(R) for all R ∈D , that is, if preferences

are single-peaked.

REMARK 4.3. By considering Ri and R′i such that τ−(Ri) = τ−(R′i) and τ+(Ri) = τ+(R′i), it follows that

generalized uncompromisingness implies almost plateau-onlyness.

We illustrate the notion of generalized uncompromisingness by means of the following example. It is

worth mentioning that, although the RSCF in the following example is chosen to be unanimous, the same is

not implied by generalized uncompromisingness.

Example 4.3. Let the set of alternatives, agents, and admissible preferences be the same as in Example

4.2. In Table 3, we present an RSCF, say ϕ , that satisfies generalized uncompromisingness. To see that

ϕ satisfies part (i) of generalized uncompromisingness, consider, for instance, the preference profiles

(12345, [123]45) and (12345, [234]51). Note that agent 2 changes his/her plateau from [123] to [234]

from the former preference profile to the latter. As alternative 5 lies strictly to the right of both the

plateaus [123] and [234], ϕ5(12345, [123]45) = ϕ5(12345, [234]51) = 0. To see that ϕ satisfies part (ii) of

generalized uncompromisingness, consider, for instance, the preference profiles ([2345]1, [234]51) and

([2345]1, [45]321). Alternative 3 lies (weakly) to the right of the plateau [234] and strictly to the left

of the plateau [45]. As required by (ii), ϕ[3,5]([2345]1, [234]51) < ϕ[3,5]([2345]1, [45]321). It is worth

mentioning that although the RSCF in this example is chosen to be unanimous, unanimity is not implied by

generalized uncompromisingness. Later, we will make a formal remark to emphasize this fact.
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1 2 12345 [123]45 [23]145 [23]451 [234]51 32145 34521 [2345]1 [45]321 43215 43521 54321

12345 (1,0,0,0,0) (1,0,0,0,0) (0.3,0.7,0,0,0) (0.3,0.7,0,0,0) (0.3,0.7,0,0,0) (0.3,0.3,0.4,0,0) (0.3,0.3,0.4,0,0) (0.3,0.3,0.4,0,0) (0.3,0.3,0.4,0,0) (0.3,0.3,0.4,0,0) (0.3,0.3,0.4,0,0) (0.3,0.3,0.4,0,0)

[123]45 (1,0,0,0,0) (0.3,0.4,0.3,0,0) (0,0.5,0.5,0,0) (0,0.5,0.5,0,0) (0,0.5,0.5,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0.6,0.4,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0)

[23]145 (0.3,0.7,0,0,0) (0,0.5,0.5,0,0) (0,0.8,0.2,0,0) (0,0.7,0.3,0,0) (0,0.6,0.4,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0)

[23]451 (0.3,0.7,0,0,0) (0,0.5,0.5,0,0) (0,0.7,0.3,0,0) (0,0.4,0.6,0,0) (0,0.5,0.5,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0)

[234]51 (0.3,0.7,0,0,0) (0,0.5,0.5,0,0) (0,0.6,0.4,0,0) (0,0.5,0.5,0,0) (0,0.2,0.3,0.5,0) (0,0,1,0,0) (0,0,1,0,0) (0,0.4,0.4,0.2,0) (0,0,0,1,0) (0,0,0,1,0) (0,0,0,1,0) (0,0,0,1,0)

32145 (0.3,0.3,0.4,0,0) (0,0.5,0.5,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0)

34521 (0.3,0.3,0.4,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0)

[2345]1 (0.3,0.3,0.4,0,0) (0,0.6,0.4,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0.4,0.4,0.2,0) (0,0,1,0,0) (0,0,1,0,0) (0,0.2,0.3,0.3,0.2) (0,0,0,0.5,0.5) (0,0,0,1,0) (0,0,0,1,0) (0,0,0,0,1)

[45]321 (0.3,0.3,0.4,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,0,1,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,0,0.5,0.5) (0,0,0,0.6,0.4) (0,0,0,1,0) (0,0,0,1,0) (0,0,0,0,1)

43215 (0.3,0.3,0.4,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,0,1,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,0,1,0) (0,0,0,1,0) (0,0,0,1,0) (0,0,0,1,0) (0,0,0,1,0)

43521 (0.3,0.3,0.4,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,0,1,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,0,1,0) (0,0,0,1,0) (0,0,0,1,0) (0,0,0,1,0) (0,0,0,1,0)

54321 (0.3,0.3,0.4,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,0,1,0) (0,0,1,0,0) (0,0,1,0,0) (0,0,0,0,1) (0,0,0,0,1) (0,0,0,1,0) (0,0,0,1,0) (0,0,0,0,1)

Table 3

�

We are now ready to present the main theorem of this section. It provides a characterization of unanimous

and strategy-proof RSCFs by saying that a unanimous RSCF is strategy-proof if and only if it satisfies

generalized uncompromisingness.

Theorem 4.3. Let 1 ≤ κ1 ≤ κ2 ≤ m and let D be a (κ1,κ2)-single-plateaued domain. If ϕ : Dn→ ∆A

satisfies generalized uncompromisingness, then it is strategy-proof.

The proof of the theorem is relegated to Appendix D.

Theorem 4.4. Let 1≤ κ1≤ κ2≤m and let D be a (κ1,κ2)-single-plateaued domain. Suppose ϕ : Dn→∆A

is unanimous. Then, ϕ is strategy-proof if and only if it satisfies generalized uncompromisingness.

The proof of the theorem is relegated to Appendix E.

4.4 A FUNCTIONAL FORM CHARACTERIZATION OF THE UNANIMOUS AND STRATEGY-

PROOF RULES FOR THE CASE OF TWO AGENTS

In this section, we consider the case where there are exactly two agents. We provide a complete characteri-

zation of the unanimous and strategy-proof rules in this scenario.

In what follows, we introduce the notion of random plateau rules. These rules are based on two

parameters β1 and β2. Both these parameters represent some probability distributions over the set of

alternatives. For instance, if the set of alternatives is {1, . . . ,5}, then possible values of β1 and β2 are

(0.1,0.2,0.2,0.3,0.2) and (0.4,0,0.1,0.2,0.3), respectively. Note that β1 and β2 are independent of each

other.

Now, we explain how the the outcome of a random plateau rule ϕ is determined based on the parameter

values β1 and β2. For any preference profile where τ(R1)∩ τ(R2) 6= /0, define the outcome as an arbitrary
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probability distribution over τ(R1)∩ τ(R2). Consider a preference profile where τ(R1)∩ τ(R2) = /0.

Suppose τ+(R1)< τ−(R2). Consider an alternative x. If x < τ+(R1) or τ−(R2)< x, then define ϕx(RN) =

0. If τ+(R1) < x < τ−(R2), define ϕx(RN) = β2(x). Finally, if x = τ+(R1), then ϕx(RN) = β2[1,x], and

if x = τ−(R2), then ϕx(RN) = β2[x,m]. For the case where τ+(R2) < τ−(R1), we use the probability

distribution given by β1 in place of β2 to determine the outcomes.

For an example of a random plateau rule, consider β1 = (0.1,0.2,0.2,0.3,0.2) and β2 = (0.4,0,0.1,0.2,0.3).

Let ϕ be a random plateau rule with respect to (β1,β2). In Table 4 , we provide the values of ϕ at some

preference profiles.

RN ϕ1(RN) ϕ2(RN) ϕ3(RN) ϕ4(RN) ϕ5(RN)

([12]345,54321) 0 0.4 0.1 0.2 0.3

([234]15, [34]521) 0 0 0.4 0.6 0

([34]251, [12]345) 0 0 0.3 0.7 0

([543]21,23451) 0 0 0.3 0.7 0

(54321, [23]145) 0 0 0.5 0.3 0.2

Table 4

Below, we provide a formal definition of these rules.

Definition 4.7. An RSCF ϕ : D2→ ∆A is called a random plateau rule with respect to (β1,β2), where

βi ∈ ∆A for all i ∈ N, if for all RN ∈D2 and all x ∈ A, we have

(i) τ(R1)∩ τ(R2) 6= /0 implies ϕ(RN) is an arbitrary probability distribution over τ(R1)∩ τ(R2),

(ii) τ+(R1) < τ−(R2) implies ϕ[x,m](RN) = β2[x,m] for all τ+(R1) < x≤ τ−(R2) and ϕx(RN) = 0 for

all x /∈ [τ+(R1),τ−(R2)], and

(iii) τ+(R2) < τ−(R1) implies ϕ[x,m](RN) = β1[x,m] for all τ+(R2) < x≤ τ−(R1) and ϕx(RN) = 0 for

all x /∈ [τ+(R2),τ−(R1)].

Now, we present the main result of this section. It characterizes all unanimous and strategy-proof rules

on (κ1,κ2)-single-plateaued domains for two agents.

Theorem 4.5. Let N = {1,2} and 1 ≤ κ1 ≤ κ2 ≤ m. Suppose D is a (κ1,κ2)-single-plateaued domain.

Then, an RSCF ϕ : D2→ ∆A is unanimous and strategy-proof if and only if it is a random plateau rule.

The proof of the theorem is relegated to Appendix F.

12



4.5 A CLASS OF UNANIMOUS AND STRATEGY-PROOF RULES

In this section, we present a large class of RSCFs that are unanimous and strategy-proof. These RSCFs are

extension of random plateau rules for arbitrary number of agents. Like random plateau rules, these rules

too are based on a class of parameters that we call monotonic.

Definition 4.8. A collection (βS)S⊆N , where βS ∈ ∆A for all S⊆ N, is called monotonic if for all /0⊆ S⊂

T ⊆ N and all x ∈ A, we have βS[x,m] ≤ βT [x,m].

Now, we introduce the notion of k-random plateau rules with respect to a class of monotonic parameters.

We use the following notation: for a preference profile RN ∈Dn, we denote by I(RN) the minimal interval

such that I(RN)∩ τ(Ri) 6= /0 for all i ∈ N, that is, the minimal interval that contains some top-ranked

alternative of each agent.

Definition 4.9. An RSCF ϕ : Dn→ ∆A is called a k-random plateau rule for some k ∈ {0, . . . ,m} with

respect to a collection of monotonic parameters (βS)S⊆N if for all RN ∈Dn and all x ∈ A, we have

(i) ϕx(RN) = 0 for all x /∈ I(RN), and

(ii) ∩i∈Nτ(Ri) = /0 implies that for all x ∈ A, ϕ[x,m](RN) = βS[x,m], where S⊆ N is such that i ∈ S if and

only if τ−(Ri) ≥ x− k and τ+(Ri) ≥ x

Note that one can construct a large class of k-random plateau rules by varying the values of β s and ks.

Next, we present the main theorem of this section.

Theorem 4.6. Let D be a (κ1,κ2)-single-plateaued domain for some 1 ≤ κ1 ≤ κ2 ≤ m. Suppose k ∈

{0, . . . ,κ1− 1} and (βS)S⊆N is a collection of monotonic parameters. Then, the k-random plateau rule

ϕ : Dn→ ∆A is unanimous and strategy-proof.

The proof of the theorem is relegated to Appendix G.

In Section 4.6, we provide a characterization of unanimous, anonymous, plateau-only, and strategy-proof

rules on a particular class of single-plateaued domains. It will be clear from that result the there are

unanimous and strategy-proof rules other than k-random plateau rules on a single-plateaued domain.

4.6 A FUNCTIONAL FORM CHARACTERIZATION OF ANONYMOUS, PLATEAU-ONLY,

AND STRATEGY-PROOF RULES

In this section, we provide a functional form characterization of anonymous, plateau-only, and strategy-

proof RSCFs on a class of single-plateaued domains. By Theorem 4.2, every unanimous and strategy-proof
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RSCF is almost plateau-only. We strengthen almost plateau-onlyness by plateau-onlyness in the interest of

tractability. We also add anonymity for the same reason. Our characterization requires too many parameters

even with these additional assumptions. Nevertheless, this characterization result can be extended by

dropping anonymity in the same way as median rules are extended to min-max rules in the context of

single-peaked domains (Moulin (1980)) . To replace plateau-onlyness by almost plateau-onlyness (which is

implied by unanimity and strategy-proofness), one would require many more parameters, which, we think,

will be too technical for its practical use.

In what follows, we present a collection of parameters that we require for the description of our

RSCFs. Let κ ∈ {1, . . . ,m}. In our subsequent discussion, this κ is going to represent the size of the

plateau of a single-plateaued preference. Given a κ , by n˜ we denote a vector (n0,n1, . . . ,nκ−1) such that

0≤ nκ−1 ≤ ·· · ≤ n1 ≤ n0 ≤ n. For instance, if κ = 3 and n = 4, then an example of n˜ would be (3,3,1).

Let N˜ be the collection of all such vectors. Consider a table of order |N˜ |× |{2, . . . ,m}| where the rows are

indexed by the vectors n˜ in N˜ and columns are indexed by the alternatives in {2, . . . ,m}. See Table 6, for an

example of such a table when κ = 3, n = 2, and m = 5.

Now, we identify some cells of the table described above for which we will define the values of our param-

eters. Let κ ∈ {1, . . . ,m}. Call the cell (corresponding to the position) (n˜,x) feasible for κ if n˜κ−x = n if x≤

κ and n˜m−x+1 = 0 if m−κ +1 < x. For instance, if κ = 3, n = 3 and m = 10, then the following are some

feasible cells: ((3,3,2),2), ((3,3,1),2), ((3,2,2),3), ((2,2,2),5), ((3,1,1),7), ((3,2,0),9), ((2,0,0),10)

and the following are some infeasible cells: ((3,1,0),2), ((1,1,1),3), ((3,3,3),9), ((2,1,1),10). We

denote by F (κ) the set of all feasible cells for κ .

We need the following terminologies to present some conditions on our parameters. For a vector n˜,

we denote by n˜+ the ‘right-shifted’ value of n˜, that is, n˜+j = n˜ j−1 if 1 ≤ j ≤ κ − 1. For instance, if

n˜ = (5,3,2,2,1), then n˜+ = (·,5,3,2,2). Here, any number that is weakly bigger than 5 (and weakly

smaller than n) can appear at the position of the dot. For two vectors n˜ and n˜′, we write n˜′ = n˜⊕1 if there

is l ∈ {0, . . . ,κ − 1} such that either [n˜′0 = n˜0 + 1, . . . ,n˜′l = n˜l + 1 and n˜′l+1 = n˜l+1, . . . ,n˜′κ−1 = n˜κ−1] or

[n˜′0 = n˜0, . . . ,n˜′l = n˜l and n˜′l+1 = n˜l+1 + 1, . . . ,n˜′κ−1 = n˜κ−1 + 1]. In Table 5, we present some values of

n˜ and n˜′ Note that when n˜ is (3,2,2,1,0), the first, second and third components of n˜ are increased by 1,

respectively, and the remaining are left unchanged. When n˜ is (4,3,2,0,0), then the last and second-last

components of n˜ are increased by 1 and the remaining are left unchanged.

Definition 4.10. Let κ ∈ {1, . . . ,m}. A collection {β (n˜,x)(n˜,x)∈F (κ)} of numbers in [0,1] is called plateau

parameters for κ if for all n˜,
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(i) β (n˜,x) ≤ β (n˜+,x−1), and

(ii) β (n˜,x) ≤ β (n˜⊕1,x).

In Table 6, we present a collection of plateau parameters for the case when κ = 3, n = 2, and m = 5.

n˜ n˜′
(3,2,2,1,0) (4,3,3,1,0)

(4,3,2,0,0) (4,3,2,1,1)

Table 5

Example 4.4. Let n = 2, κ = 3 and A = {1,2,3,4,5}. Here

F (3) = {((2,2,0),2), ((2,2,1),2), ((2,2,2),2),

((2,0,0),3), ((2,1,0),3), ((2,2,0),3), ((2,1,1),3), ((2,2,1),3), ((2,2,2),3),

((0,0,0),4), ((1,0,0),4), ((1,1,0),4), ((2,0,0),4), ((2,1,0),4), ((2,2,0),4), ((1,1,1),4),

((0,0,0),5), ((1,0,0),5), ((2,0,0),5)}.

Let {(β (n˜,x))(n˜,x) ∈F (3)} be a collection of plateau parameters as given in Definition 4.10. Con-

sider x = 3, n˜ = (2,0,0) and n˜′ = (2,2,0). By Condition (i) in Definition 4.10, 0 ≤ β ((2,0,0),3) ≤

β ((2,2,0),2) ≤ 1. Take x = 4, n˜= (0,0,0) and n˜′ = (1,1,0). By Condition (ii) of Definition 4.10, we

must have 0≤ β ((0,0,0),4) ≤ β ((1,1,0),4) ≤ 1. Now, take x = 4, n˜= (1,1,0) and n˜′ = (1,1,1). As β s

are plateau parameters, by Condition (ii) of Definition 4.10, 0≤ β ((1,1,0),4) ≤ β ((1,1,1),4) ≤ 1. Table

6 provides an example of plateau parameters.
�

Definition 4.11. Let κ ∈ {1, . . . ,m}. A collection of plateau parameters {β (n˜,x)(n˜,x)∈F (κ)} is called

unanimous if β (n˜,x) = 1 whenever n˜0 = n and n˜κ−1 > 0, and β (n˜,x) = 0 whenever n˜0 < n and n˜κ−1 = 0.

In Table 7, we provide a collection of unanimous plateau parameters.

In Example 4.4, for {β (n˜,x)(n˜,x)∈F (3)} to be unanimous plateau parameters we must have β ((2,2,1),2) =

β ((2,2,2),2) = β ((2,1,1),3) = β ((2,2,1),3) = β ((2,2,2),3) = 1 and β ((0,0,0),4) = β ((1,0,0),4) =

β ((1,1,0),4) = β ((0,0,0),5) = β ((1,0,0),5) = 0.

In what follows, we present the notion of κ-plateaued rules. We need the following terminology for

our presentation. For an alternative x ∈ A, a number l ∈ {0, . . . ,κ−1}, and a preference profile RN ∈Dn,
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(n0,n1,n2) 2 3 4 5

(0,0,0) .4 .3

(1,0,0) .5 .4

(1,1,0) .45

(1,1,1)

(2,0,0) .6 .6 .45

(2,1,0) .55 .55

(2,1,1) .55

(2,2,0) .7 .6 .5

(2,2,1) .8 .7

(2,2,2) .9 .8

Table 6

(n0,n1,n2) 2 3 4 5

(0,0,0) 0 0

(1,0,0) 0 0

(1,1,0) 0

(1,1,1)

(2,0,0) 0.6 .6 .45

(2,1,0) .55 .55

(2,1,1) 1

(2,2,0) 0.7 .6 .5

(2,2,1) 1 1

(2,2,2) 1 1

Table 7

let nx
l (RN) = |{i ∈ N | τ+(Ri) ≥ x+ l}| be the set of agents whose right-end point of the plateau at RN is

(weakly) on the right of x+ l.

Definition 4.12. An RSCF ϕ : Dn→ ∆A is called a κ-plateaued rule for if there is a collection of plateau

parameters {(β (n˜,x))(n˜,x)∈F (κ)} for κ such that for all RN ∈Dn, ϕ[x,m](RN) = β (n˜,x), where n˜l = nx
l (RN)

for all 0≤ l ≤ κ−1.

In Example 4.5, we present a κ-plateaued rule .

Example 4.5. Let n = 2, κ = 3 and A = {1,2,3,4,5}. Let ϕ be a 3-plateaued rule with respect to

a collection {(β (n˜,x))(n˜,x)∈F (3)} as given in Example 4.4. Consider the preference profile RN ∈ Dn

where τ(R1) = [1,3] and τ(R2) = [3,5]. Take x = 5. Note that n5(RN) = (1,0,0). Thus, ϕ5(RN) =

β (5, (1,0,0)) = 0.4. Similarly, n4(RN) = (1,1,0), n3(RN) = (2,1,1) and n2(RN) = (2,2,1) (refer to

Figure 1). As ϕ is a 3-plateaued rule , ϕ[4,5](RN) = 0.45, ϕ[3,5](RN) = 0.55 , ϕ[2,5](RN) = 0.8 and
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ϕ[1,5](RN) = 1. Thus ϕ5(RN) = 0.4, ϕ4(RN) = 0.05, ϕ3(RN) = 0.1, ϕ2(RN) = 0.25 and ϕ1(RN) = 0.2.

The complete rule is given in Table 8. �

1 2 3 4 5

τ(R1)

τ(R2)

Figure 1

[1,3] [2,4] [3,5]

[1,3] (0.3,0.1,0.2,0.1,0.3) (0.2,0.25,0.05,0.2,0.3) (0.2,0.25,0.1,0.05,0.4)

[2,4] (0.2,0.25,0.05,0.2,0.3) (0.1,0.3,0,0.3,0.3) (0.1,0.2,0.15,0.15,0.4)

[3,5] (0.2,0.25,0.1,0.05,0.4) (0.1,0.2,0.15,0.15,0.4) (0.1,0.1,0.3,0.05,0.45)

Table 8

Now, we are ready to present the main results of this section. For ease of presentation, we call a

(κ ,κ)-singe-plateaued domain a κ-single-plateaued domain. Note that if κ = 1, then a D domain is the

single-peaked domain. Theorem 4.7 characterizes all anonymous, plateau-only, and strategy-proof RSCFs

on a κ-single-plateaued domain.

Theorem 4.7. Let κ ∈ {1, . . . ,m} and D be a κ-single-plateaued domain. An RSCF ϕ : Dn → ∆A is

anonymous, plateau-only, and strategy-proof if and only if it is κ-plateaued rule .

The proof of the theorem is relegated to Appendix H.

Corollary 4.1. An RSCF is unanimous, anonymous, plateau-only, and strategy-proof if and only if it is a

κ-plateaued rule with respect to some unanimous plateau parameters.

The proof of the corollary is relegated to Appendix I.

Our next theorem says that a κ-plateaued rule is strategy-proof (together with being anonymous and

plateau-only) on any single-plateaued domain such that the size of the plateau for any preference in it is at

least κ .

Theorem 4.8. Let κ ∈{1, . . . ,m} and let D be a (κ , κ̂)-single-plateaued domain for some (arbitrary) κ̂ ≥ κ .

Suppose ϕ : Dn→ ∆A is a κ-plateaued rule . Then, ϕ is anonymous, plateau-only, and strategy-proof.

The proof of the theorem is relegated to Appendix J.
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5. CONCLUSION

In this paper we study the structure of unanimous (or Pareto optimality) and strategy-proof random social

choice functions when weak preferences are admissible. 3.1 of this paper shows that under some minimal

richness condition on the weak single-peaked domain an RSCF is Pareto optimal and strategy-proof if and

only if it is an extreme PFBR. An interesting application of this result is the single-peaked domain with

outside options (see Cantala (2004)). Theorem Theorem 4.1 shows that on a single-plateaued domain under

strategy-proofness, unanimity and Pareto optimality are equivalent for RSCFs. Theorem 4.2 shows that any

unanimous and strategy-proof RSCF is almost plateau-only.

Next, in Theorems 4.3 and 4.4, we provide an axiomatic characterization of the unanimous and strategy-

proof RSCFs. We show that an RSCF is unanimous and strategy-proof if and only if it satisfies a generalized

version of uncompromisingness. Uncompromisingness says that as long as the plateau of an individual

stay on one side of an alternative, the probability of that alternative cannot be changed. Generalized

uncompromisingness additionally imposes some restriction on how the probability of an alternative can

change when the plateau of an individual crosses it.

Finally, we proceed to present a functional form presentation of RSCFs. We provide a functional form

characterization of the unanimous and strategy-proof rules on (κ1,κ2)-single-plateaued domains for two

players. We also provide a class of unanimous and strategy-proof RSCFs on (κ1,κ2)-single-plateaued

domains for more than two players. In 4.7 we strengthen almost plateau-onlyness by plateau-onlyness and

provide a functional form characterization of the plateau-only, anonymous, and strategy-proof RSCFs.

A. PROOF OF THEOREM 3.1

Proof. (“If” part) We show that an extreme PFBR is Pareto optimal and strategy-proof. Since an alternative

receives positive probability in an extreme PFBR at a profile if and only if the alternative is top-ranked

by at least one agent, it follows that the outcome of an extreme PFBR at any profile cannot be Pareto

dominated, which implies that such a rule is Pareto optimal. Let ϕ be an extreme PFBR. To show strategy-

proofness, let us assume for contradiction that ∑y∈U(x,Ri) ϕy(R′i,RN\i)>∑y∈U(x,Ri) ϕy(Ri,RN\i) for some RN

and R′i. Let P̂N ∈ strict(DN) and sPi ∈ strict(Di) be such that τ(P̂i) = τ(Ri) for all i ∈ N, τ(sPi) = τ(R′i), and

U(x,Ri) is an upper contour set of P̂i. By the definition of an extreme PFBR, we have ϕ(P̂N) = ϕ(RN) and

ϕ(sPi, P̂N\i) = ϕ(R′i,RN\i). This implies ∑y∈U(x,Ri) ϕy(sPi, P̂N\i) > ∑y∈U(x,Ri) ϕy(P̂N), which in turn means

that the restriction of ϕ on strict(DN) is manipulable. However, this is a contradiction since the restriction
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of ϕ on strict(DN) is a PFBR which is known to be strategy-proof (see Ehlers et al. (2002).

(“Only-if” part) A profile RN ∈ DN is called a boundary profile if τ(Ri) ∈ {1,m} for all i ∈ N, that is,

the top-ranked alternative of any preference in such a profile lies on the boundary 1 or m of the set of

alternatives. We make extensive use of two particular types of strict single-peaked preferences in our proofs:

a single-peaked preference P is called left (or right) if for all x < τ(P) and all y > τ(P), we have xPy (or

yPx).

Lemma A.1. Let i ∈ N, Pi ∈ strict(Di), and RN\i ∈DN\i. Suppose r < τ(Pi) < s are such that sPir. Then,

(i) there exists P̄i ∈Di with P̄i ≡ τ(Pi) · · ·sr · · · such that ϕs(Pi,RN\i) ≥ ϕs(P̄i,RN\i), and

(ii) ¯̄Pi ∈Di with ¯̄Pi≡ τ(Pi) · · ·rs · · · such that ϕs(Pi,RN\i)>ϕs( ¯̄Pi,RN\i) implies ϕk(Pi,RN\i)<ϕk( ¯̄Pi,RN\i)

for some k ∈ [r,τ(Pi)).

Proof. By the definition of single-peakedness, if sPiaPir for some a ∈ A, then either a > s or a ∈ (r,τ(Pi)).

Consider the strict single-peaked preference P̂i ∈ strict(Di) such that τ(P̂i) = τ(Pi), U(s,Pi) =U(s, P̂i) and

sP̂iaP̂ir for some a ∈ A if and only if a ∈ (r,τ(Pi)) \U(s,Pi). Existence of such a preference is guaranteed

by minimal richness. By strategy-proofness, ϕs(Pi,RN\i) = ϕs(P̂i,RN\i). By the definition of P̂i, there exists

l ≥ 0 such that P̂i ≡ ·· ·s(r+ l)(r+ l−1) · · · (r+ 1)r · · · . Let ˆ̂Pi be obtained by swapping the alternatives s

and (r+ l) at P̂i. Thus, ˆ̂Pi ≡ ·· · (r+ l)s(r+ l−1) · · · (r+ 1)r · · · . Note that ˆ̂Pi is strict single-peaked. By

straightforward application of strategy-proofness, ϕs(P̂i,RN\i) ≥ ϕs(
ˆ̂Pi,RN\i). Continuing in this manner,

we can arrive at a preference P̄i such that P̄i ≡ τ(Pi) · · ·sr · · · and ϕs(Pi,RN\i)≥ ϕs(P̄i,RN\i). This completes

the proof of part (i) of the lemma.

Let ¯̄Pi be the strict single-peaked preference obtained by swapping s and r at P̄i. Since ϕs(Pi,RN\i) =

ϕs(P̂i,RN\i) and we have arrived at the preference ¯̄Pi from P̂i by a sequence of swaps between s and

some alternatives in the set {r, . . . ,r+ l}, if ϕs( ¯̄P,RN\i) < ϕs(Pi,RN\i), then there must exist some a ∈

{r, . . . ,r+ l} such that ϕa(P̄i,RN\i) > ϕa(Pi,RN\i). This completes the proof of part (ii) of the lemma. �

We prove the “only-if” part of the theorem in two steps. In the first step, we show that every Pareto

optimal and strategy-proof RSCF on the domain strict(DN) behaves like an extreme PFBR on the set of

boundary profiles. In the next step, we show that the same happens on every profile.

Step 1. Let ϕ be a Pareto optimal and strategy-proof RSCF. We show that ϕ is an extreme PFBR. The

following claim says that only the boundary alternatives 1 and m can get positive probability at boundary

profiles.

Claim A.1. ϕx(RN) = 0 for all x ∈ {2, . . . ,m−1} and all boundary profiles RN ∈DN .
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Proof of Claim. Assume for contradiction ϕx(RN)> 0 for some x ∈ {2, . . . ,m−1} and for some boundary

profile RN ∈ DN . For each Ri ∈ Di, let R̄i be the dichotomous preference with τ(R̄i) = τ(Ri). Note

that such preferences exist as the domain is minimally rich. By Pareto optimality, ϕx(R̄N) = 0 for all

x ∈ {2, . . . ,m− 1}. For all x ∈ {1,m}, let Nx be the set of agents i whose top ranked alternative at R̄i is

x, that is Nx = {i ∈ N | τ(R̄i) = x}. Take i ∈ N. Consider the profile (Ri, R̄N\i). By strategy-proofness,

ϕ1(Ri, R̄N\i) = ϕ1(R̄i, R̄N\i). Also, by Pareto optimality, ϕx(Ri, R̄N\i) = 0 for all x ∈ {2, . . . ,m−1}. This

is because if ϕx(Ri, R̄N\i) > 0 for some x ∈ {2, . . . ,m− 1}, then shifting this probability to 1 will be

a Pareto improvement. Thus, ϕ(Ri, R̄N\i) = ϕ(R̄i, R̄N\i). Applying this logic repeatedly for all agents

in N1, we obtain ϕ(RN1 , R̄N\N1) = ϕ(R̄N1 , R̄N\N1). Now, consider i ∈ Nm. Since τ(R̄i) = τ(Ri) = m,

by strategy-proofness, ϕm(Ri,RN1 , R̄N\N1∪i) = ϕm(R̄i,RN1 , R̄N\N1∪i). This, combined with the fact that

ϕ(RN1 , R̄N\N1) = ϕ(R̄N1 , R̄N\N1), yields

ϕm(Ri,RN1 , R̄N\N1∪i) = ϕm(R̄N). (1)

Applying this argument for all agents in Nm \ {i}, we obtain ϕm(RN) = ϕm(R̄N). Since ϕx(RN) > 0 for

some x ∈ {2, . . . ,m−1}, this implies

ϕ1(RN) < ϕ1(R̄N). (2)

Note that we can arrive at the profile RN in a symmetrically opposite way: by changing the preferences of

agents in Nm from R̄i to Ri first, and then changing the preferences of agents in N1 from R̄i to Ri. Therefore,

by using the same argument as for obtaining (1), we can conclude that ϕ1(RN) = ϕ1(R̄N), which contradicts

(2). �

To prove that ϕ is an extreme PFBR, it remains to show that ϕ is monotonic over the boundary profiles,

that is, for all RN ,R′N ∈ DN with S(m,RN) ⊆ S(m,R′N), we have ϕm(RN) ≤ ϕm(R′N). This follows by

straightforward application of strategy-proofness.

Step 2. Let strict(Di) ⊂Di be the strict single-peaked domain contained in Di. Since ϕ is Pareto optimal

and strategy-proof, it must be a PFBR on strict(DN). By Step 1, it follows that ϕ is an extreme PFBR. It is

sufficient to show that ϕ is tops-only on DN . We prove this by using induction on the number of agents in a

preference profile having non-strict preferences. We begin with the base case where there exists exactly one

agent having non-strict preference.

Base case: Let PN ∈ strict(DN) be a strict single-peaked preference profile and let Ri be a non-strict

preference with τ(Ri) = τ(Pi). We show that ϕ(PN) = ϕ(Ri,PN\i). Assume for contradiction that
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ϕ(PN) 6= ϕ(Ri,PN\i). Without loss of generality, let s > τ(Pi) be such that ϕs(Ri,PN\i) > ϕs(Pi,PN\i)

and ϕt(Ri,PN\i) ≤ ϕt(Pi,PN\i) for all t ∈ [τ(Pi),s).

Case B1. Suppose that there is no agent j such that τ(Pj) ∈ (τ(Pi),s).

Let P̂i be the right strict single-peaked preference with τ(P̂i) = τ(Ri) = τ(Pi). Since (P̂i,PN\i) ∈ strict(DN),

by only-topsness ϕt(P̂i,PN\i) = 0 for all t ∈ (τ(Pi),s). By strategy-proofness ϕU(s,P̂i)
(P̂i,PN\i)≥ϕU(s,P̂i)

(Ri,PN\i)

and ϕτ(Pi)(P̂i,PN\i) = ϕτ(Pi)(Ri,PN\i). Combining all these observations, it follows that

ϕs(P̂i,PN\i) ≥ ϕs(Ri,PN\i). (3)

Recall that

ϕs(Ri,PN\i) > ϕs(Pi,PN\i). (4)

By (3) and (4) this implies

ϕs(P̂i,PN\i) > ϕs(Pi,PN\i). (5)

Since τ(Pi) = τ(P̂i), we have ϕs(Pi,PN\i) = ϕs(P̂i,PN\i), which contradicts (5).

Case B2. Suppose that Case 1 does not hold, that is, there are agents j such that τ(Pj) ∈ (τ(Pi),s).

Consider j ∈ N such that τ(Pj) ∈ (τ(Pi),s) and there does not exist l ∈ N such that τ(Pl) ∈ (τ(Pi),τ(Pj))

Claim A.2. ϕs(Ri, P̂j,PN\{i, j}) = ϕs(Ri,Pj,PN\{i, j}) for some P̂j ∈ strict(D j) with τ(P̂j) = τ(Pi).

Proof of Claim A.2

Case B2.1. Suppose τ(Pi)Pjs.

Since τ(Pi)Pjs, there exists P̂j with τ(P̂j) such that U(s, P̂j) =U(s,Pj). By strategy-proofness,

ϕs(Ri, P̂j,PN\{i, j}) = ϕs(Ri,Pj,PN\{i, j}).

Case B2.2. Suppose sPjτ(Pi).

In view of Case 1 it is sufficient to show ϕs(Ri,Pj,PN\{i, j}) = ϕs(Ri, P̄j,PN\{i, j}) for some P̄j with τ(P̄j) =

τ(Pj) and τ(Pi)P̄js.

Since τ(Pi) < τ(Pj) < s, by Lemma A.1, we can construct a preference P̃j ≡ ·· ·sτ(Pi) · · · such that

ϕs(Ri,Pj,PN\{i, j}) ≥ ϕs(Ri, P̃j,PN\{i, j}). (6)

Construct a preference ˜̃Pj by swapping s and τ(Pi) in P̃j. By strategy-proofness,

ϕs(Ri, P̃j,PN\{i, j}) ≥ ϕs(Ri, ˜̃Pj,PN\{i, j}). (7)
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Combining (6) and (7), ϕs(Ri,Pj,PN\{i, j}) ≥ ϕs(Ri, ˜̃Pj,PN\{i, j}). If ϕs(Ri,Pj,PN\{i, j}) =

ϕs(Ri, ˜̃Pj,PN\{i, j}), then we take P̄j = ˜̃Pj. Suppose ϕs(Ri,Pj,PN\{i, j}) > ϕs(Ri, ˜̃Pj,PN\{i, j}). It follows

from Lemma A.1 that there exists r ∈ [τ(Pi),τ(Pj)) such that ϕr(Ri,Pj,PN\{i, j}) < ϕr(Ri, ˜̃Pj,PN\{i, j}). Let

P̂i be the right strict single-peaked preference with τ(Pi) = τ(P̂i). Since (P̂i, ˜̃Pj,PN\{i, j}) ∈ strict(DN),

by only-topsness and our assumption that there is no l ∈ N such that τ(Pl) ∈ (τ(Pi),τ(Pj)), we have

ϕt(P̂i, ˜̃P,PN\{i, j}) = 0 for all t ∈ (τ(Pi),τ(Pj)). Consider U(r, P̂i). By strategy-proofness,

ϕU(r,P̂i)
(P̂i, ˜̃Pj,PN\{i, j}) ≥ ϕU(r,P̂i)

(Ri, ˜̃Pj,PN\{i, j}). Because ϕr(Ri, ˜̃Pj,PN\{i, j}) > 0 and ϕt(P̂i, ˜̃P,PN\{i, j}) =

0 for all t ∈U(r, P̂i) \{τ(Pi)}, this implies ϕτ(Pi)(P̂i, ˜̃Pj,PN\{i, j}) > ϕτ(Pi)(Ri, ˜̃Pj,PN\{i, j}). Since τ(Pi) =

τ(P̂i) = τ(Ri), this is a contradiction to strategy-proofness. �

Consider the profile (Ri, P̂j,PN\{i, j}). Let l ∈N be such that τ(Pl) ∈ (τ(Pi),s) and τ(Pl̂) /∈ (τ(Pi),τ(Pl))

for all l̂ ∈ N. By using similar logic as for Claim A.2, we can construct a preference P̂l such that

τ(P̂l) = τ(Pl) and ϕs(Ri, P̂j,PN\{i, j}) = ϕs(Ri, P̂j, P̂l ,PN\{i, j,l}). Continuing in this manner, we can construct

a profile (Ri, P̂N\i) such that τ(P̂j) = τ(Pi) if τ(Pj) ∈ (τ(Pi),s) and P̂j = Pj if τ(Pj) /∈ (τ(Pi),s) and

ϕs(Ri, P̂N\i) = ϕs(Ri,PN\i) (8)

Note that by construction of P̂N\i, there is no agent j such that τ(P̂j) ∈ (τ(Pi),s). Thus, by applying the

same logic as in Case B1, ϕs(Ri, P̂N\i) = ϕs(Pi,PN\i). Combining this with (8), we have ϕs(Pi,PN\i) =

ϕs(Ri,PN\i).

Induction step: Suppose that ϕ behaves like an extreme PFBR over all profiles at which at most k agents

have non-strict preferences. We proceed to show that the same holds over all profiles where k+ 1 agents

have non-strict preferences.

Consider (RS,PN\S) ∈DN such that Ri is not strict for all i ∈ S, Pi is strict for all i ∈ N \S and |S|= k+ 1.

Assume without loss of generality, agent 1 ∈ S. Let P1 be a strict preference with τ(P1) = τ(R1). In

view of our induction hypothesis, it is enough to show, ϕ(RS,PN\S) = ϕ(P1,RS\1,PN\S). Clearly, by

strategy-proofness, ϕτ(R1)(RS,PN\S) = ϕτ(R1)(P1,RS\1,PN\S). Consider l ∈ A such that τ(Ri) = l for some

i ∈ S\1. We show that ϕl(RS,PN\S) = ϕl(P1,RS\1,PN\S). Let Pi be a strict preference with τ(Pi) = τ(Ri).

By strategy-proofness,

ϕl(Pi,RS\i,PN\S) = ϕl(RS,PN\S). (9)

Since both the profiles (Pi,RS\i,PN\S) and (P1,RS\1,PN\S) have exactly k agents with non-strict preferences,
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by our induction hypothesis,

ϕl(Pi,RS\i,PN\S) = ϕl(P1,RS\1,PN\S). (10)

Combining (9) and (10), we have ϕl(RS,PN\S) = ϕl(P1,RS\1,PN\S).

Next, we proceed to show ϕ(RS,PN\S) = ϕ(P1,RS\1,PN\S). Assume for contradiction that ϕ(RS,PN\S) 6=

ϕ(P1,RS\1,PN\S). Without loss of generality s > τ(P1) be such that ϕs(RS,PN\S) > ϕs(P1,RS\1PN\S) and

ϕt(RS,PN\S) ≤ ϕt(P1,RS\1PN\S) for all t ∈ (τ(P1),s). Let i ∈ S be such that there does not exist l ∈ S such

that τ(Rl) ∈ (τ(Ri),s]. The rest of the proof follows by using similar logic as for the base case, but for the

sake of completeness, we present it.

Case I1. Suppose there is no agent j such that τ(R j) ∈ (τ(Ri),s).

Let P̂i be the right strict single-peaked preference with τ(P̂i) = τ(Ri) = τ(Pi). Since (P̂i,RS\i,PN\S)

has exactly k agents with non-strict preferences, by our induction hypothesis ϕt(P̂i,RS\i,PN\S) = 0 for all

t ∈ (τ(Pi),s). By strategy-proofness ϕU(s,P̂i)
(P̂i,RS\i,PN\S)≥ ϕU(s,P̂i)

(RS,PN\S) and ϕτ(Pi)(P̂i,RS\i,PN\S) =

ϕτ(Pi)(RS,PN\S). Combining all these observations,

ϕs(P̂i,RS\i,PN\i) ≥ ϕs(RS,PN\S). (11)

Recall that

ϕs(RS,PN\S) > ϕs(P1,RS\1,PN\S). (12)

By (11) and (12) this implies

ϕs(P̂i,RS\i,PN\S) > ϕs(P1,RS\1,PN\S). (13)

Since at the profiles (P̂i,RS\i,PN\S) and (P1,RS\1,PN\S), ϕs(P̂i,RS\i,PN\S) = ϕs(P1,RS\1,PN\S), which con-

tradicts (13).

Case I2. Suppose that Case 1 does not hold, that is, there are agents j such that τ(Pj) ∈ (τ(Pi),s).

Consider j ∈ N such that τ(Pj) ∈ (τ(Pi),s) and there does not exist l ∈ N such that τ(Pl) ∈ (τ(Pi),τ(Pj)).

Claim A.3. ϕs(RS, P̂j,PN\S∪ j) = ϕs(RS,Pj,PN\S∪ j) for some P̂j ∈ strict(D j) with τ(P̂j) = τ(Pi).

Proof of Claim A.3

Case I2.1. Suppose τ(Pi)Pjs.

Since τ(Pi)Pjs, there exists P̂j with τ(P̂j) such that U(s, P̂j) =U(s,Pj). By strategy-proofness, ϕs(RS, P̂j,PN\S∪ j) =

ϕs(RS,Pj,PN\S∪ j).
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Case I2.2. Suppose sPjτ(Pi).

In view of Case 1 it is sufficient to show ϕs(RS,Pj,PN\S∪ j) = ϕs(RS, P̄j,PN\S∪ j) for some P̄j with τ(P̄j) =

τ(Pj) and τ(Pi)P̄js.

Since τ(Pi) < τ(Pj) < s, by Lemma A.1, we can construct a preference P̃j ≡ ·· ·sτ(Pi) · · · such that

ϕs(RS,Pj,PN\S∪ j) ≥ ϕs(RS, P̃j,PN\S∪ j). (14)

Construct a preference ˜̃Pj by swapping s and τ(Pi) in P̃j. By strategy-proofness,

ϕs(RS, P̃j,PN\S∪ j) ≥ ϕs(RS, ˜̃Pj,PN\S∪ j). (15)

Combining (14) and (15), ϕs(RS,Pj,PN\S∪{ j})≥ϕs(RS, ˜̃Pj,PN\S∪{ j}). If ϕs(RS,Pj,PN\S∪ j) =ϕs(RS, ˜̃Pj,PN\S∪ j),

then we take P̄j = ˜̃Pj. Suppose ϕs(RS,Pj,PN\S∪ j) > ϕs(RS, ˜̃Pj,PN\S∪ j). It follows from Lemma A.1

that there exists r ∈ [τ(Pi),τ(Pj)) such that ϕr(RS,Pj,PN\S∪ j) < ϕr(RS, ˜̃Pj,PN\S∪ j). Let P̂i be the right

strict single-peaked preference with τ(Pi) = τ(P̂i). Since (P̂i,RS\i, ˜̃Pj,PN\S∪ j) has exactly k agents with

non-strict preferences, by our induction hypothesis and assumption that there is no l ∈ N such that

τ(Pl) ∈ (τ(Pi),τ(Pj)), we have ϕt(P̂i,RS\i, ˜̃Pj,PN\S∪ j) = 0 for all t ∈ (τ(Pi),τ(Pj)). Consider U(r, P̂i). By

strategy-proofness, ϕU(r,P̂i)
(P̂i,RS\{i}, ˜̃Pj,PN\S∪ j) ≥ ϕU(r,P̂i)

(RS, ˜̃Pj,PN\S∪ j). Because ϕr(RS, ˜̃Pj,PN\S∪ j) >

0 and ϕt(P̂i,RS\i
˜̃P,PN\S∪ j) = 0 for all t ∈ U(r, P̂i) \ {τ(Pi)}, this implies ϕτ(Pi)(P̂i,RS\i, ˜̃Pj,PN\S∪ j) >

ϕτ(Pi)(RS, ˜̃Pj,PN\S∪ j). Since τ(Pi) = τ(P̂i) = τ(Ri), this is a contradiction to strategy-proofness. �

Consider the profile (RS, P̂j,PN\S∪ j). Let l ∈N be such that τ(Pl) ∈ (τ(Pi),s) and τ(Pl̂) /∈ (τ(Pi),τ(Pl)) for

all l̂ ∈ N. By using similar logic as for Claim A.3, we can construct a preference P̂l such that τ(P̂l) = τ(Pl)

and ϕs(RS, P̂j,PN\S∪ j) = ϕs(RS, P̂j, P̂l ,PN\S∪{ j,l}). Continuing in this manner, we can construct a profile

(RS, P̂N\S) such that τ(P̂j) = τ(Pi) if τ(Pj) ∈ (τ(Pi),s) and P̂j = Pj if τ(Pj) /∈ (τ(Pi),s) and

ϕs(RS, P̂N\S) = ϕs(RS,PN\S). (16)

Note that by construction of (RS, P̂N\S), there is no agent j such that τ(R̂ j) ∈ (τ(Pi),s). Thus, by applying

the same logic as in Case I1, ϕs(RS, P̂N\S) = ϕs(P1,RS\1,PN\S). Combining this with (16), we have

ϕs(RS, P̂N\S) = ϕs(P1,RS\1,PN\S).

�
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B. PROOF OF THEOREM 4.1

We make extensive use of two particular types of single-plateaued preferences in our proofs: a single-

plateaued preference R is called left (or right) if for all x < τ−(R) and all y > τ+(R), we have xPy (or

yPx).

Lemma B.1. An RSCF ϕ : Dn→ ∆A satisfies Pareto optimality if and only if it is unanimous and for all

RN ∈Dn such that ∩i∈Nτ(Ri) = /0, we have ϕI(RN)(RN) = 1, where I(RN) is the minimal interval such that

I(RN)∩ τ(Ri) 6= /0 for all i ∈ N.

Proof of Lemma B.1. The proof of this lemma is somewhat straightforward. However, for the sake of

completeness, we provide it here.

(If part) Suppose ϕ satisfies Pareto optimality. Then, it is straightforwardly unanimous. Take RN ∈Dn such

that ∩i∈Nτ(Ri) = /0. We show that ϕI(RN)(RN) = 1. It is sufficient to show ϕx(RN) = 0 for all x /∈ I(RN).

Take x /∈ I(RN). Let I(RN) = [y,z] . Assume without loss of generality x < y. Since I(RN) = [y,z], there

exists i ∈ N such that τ+(Ri) = y. Since RN is not unanimous, there exists j ∈ N such that τ−(R j) > y.

This means yPjx. Moreover, since I(RN) = [y,z], τ+(Ri) ≥ y for all i ∈ N. This means yRix for all i ∈ N.

Combining, we have y Pareto dominates x. So, ϕx(RN) = 0.

(Only-if part) Suppose an RSCF ϕ : Dn→ ∆A is unanimous and satisfies the property that for all RN ∈Dn

such that ∩i∈Nτ(Ri) = /0, ϕI(RN)(RN) = 1. We show that ϕ satisfies Pareto optimality. Take RN ∈Dn. If

RN is a unanimous profile, then there is nothing to show. Suppose RN is not unanimous. Take x ∈ I(RN).

We show that there does not exist y ∈ A such that yRix for all i ∈ N and yPjx for some j ∈ N. Assume

for contradiction that there is such an alternative y ∈ A. Because x ∈ I(RN), there exist i, j ∈ N such that

τ+(Ri) ≤ x and τ−(R j) ≥ x. So, if y > x, then xPiy. On the other hand, if y < x, then xPjy. So, y cannot

Pareto dominate x.

�

Proof. “Only if” part of the theorem is straightforward, we proceed to prove the “if” part. Let D be the

(κ1,κ2)-single-plateaued domain and let ϕ : Dn → ∆A be a unanimous and strategy-proof RSCF. We

show that ϕ is Pareto optimal. Take RN ∈ Dn such that ∩i∈Nτ(Ri) = /0. In view of Lemma B.1, it is

sufficient to show that ϕI(RN)(RN) = 1. Suppose not. Let I(RN) = [x,y]. Assume without loss of generality,

ϕ[1,x−1](RN) > 0. Take i ∈ N such that τ−(Ri) > x. There must exist such an agent since RN is not a

unanimous profile. Let R′i ∈D be a left-single-plateaued preference such that τ−(R′i) = x and |τ(R′i)|= κ1.
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Claim. ϕ[1,x−1](R
′
i,RN\i) ≥ ϕ[1,x−1](RN).

Proof of the claim. Note that since R′i is a left-single-plateaued preference, for all w ≥ τ+(R′i) the

interval [1,w] is an upper contour set in R′i. So, by strategy-proofness, ϕ[1,w](R
′
i,RN\i) ≥ ϕ[1,w](RN), as

otherwise agent i manipulates at (R′i,RN\i) via Ri. Now, assume for contradiction that ϕ[1,x−1](R
′
i,RN\i)<

ϕ[1,x−1](RN). This implies for all w≥ τ(R′i),

ϕ[x,w](R
′
i,RN\i) > ϕ[x,w](RN). (17)

Consider the upper contour set U(x,Ri). Since Ri is single-plateaued, there must be an alternative z≥ τ+(Ri)

such that U(x,Ri) = [x,τ+(Ri))∪ [τ+(Ri)+ 1,z]. By 17, we have ϕ[x,z](R
′
i,RN\i)> ϕ[x,z](RN). However,

since [x,z] is an upper contour set at Ri, this means agent i manipulates at RN via R′i. �

Continuing in this manner, we can construct a profile R′N with ϕ[1,x−1](R
′
N) > 0 where τ−(R′i) = x

and R′i is left-single-plateaued for all i ∈ Di with τ−(Ri) > x and R′i = Ri for all other agents. Clearly,

x−1 /∈∩i∈Nτ(R′i). Moreover, since I(RN) = [x,y], there must be i∈N with τ+(Ri) = x. By the construction

of R′N , R′i = Ri for such an agent i. This means x + 1 /∈ τ(R′i) for such an agent, and consequently,

x+ 1 /∈ ∩i∈Nτ(R′i). Thus, we have ∩i∈Nτ(R′i) = {x}. By unanimity, ϕx(R′N) = 1, which is a contradiction

to ϕ[1,x−1](R
′
N) > 0. �

C. PROOF OF THEOREM 4.2

Proof. Let D be the (κ1,κ2)-single-plateaued domain and let ϕ : Dn→ ∆A be a unanimous and strategy-

proof RSCF. We show ϕ is almost plateau-only. Take i ∈ N and (Ri,RN\i), (R′i,RN\i) ∈ Dn such that

τ(Ri) = τ(R′i). Let x ∈ A\ τ(Ri) be arbitrary. It is enough to show ϕx(Ri,RN\i) = ϕx(R′i,RN\i). Without

loss of generality, assume x > τ+(Ri), ϕx(Ri,RN\i) < ϕx(R′i,RN\i), and ϕy(Ri,RN\i) = ϕy(R′i,RN\i) for all

y ∈ (τ+(Ri),x).

Let j ∈ N be such that τ+(R j) ≤ τ+(Rk) for all k ∈ N. Consider R′j ∈D such that τ+(R′j) = τ+(Ri)

and R′j is left single-plateaued.

Claim C.1. ϕy(Ri,R′j,RN\{i, j}) = ϕy(Ri,R j,RN\{i, j}) and ϕy(R′i,R
′
j,RN\{i, j}) = ϕy(R′i,R j,RN\{i, j}) for all

y > τ+(Ri).

Proof. It is sufficient to show ϕy(Ri,R′j,RN\{i, j}) = ϕy(Ri,R j,RN\{i, j}) for all y > τ+(Ri). The proof of

ϕy(R′i,R
′
j,RN\{i, j}) = ϕy(R′i,R j,RN\{i, j}) for all y > τ+(Ri) follows from similar argument. Take y ∈ A
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such that y > τ+(Ri). Because τ+(R′j) = τ+(Ri) and τ+(Ri) < y, we have τ+(R′j) < y. Since R′j is left

single-plateaued and τ+(R′j)< y, U(y,R′j) =U(y,R j)∪ [1,τ−(R j)). By strategy-proofness of ϕ , we have

ϕU(y,R j)(Ri,R j,RN\{i, j}) ≥ ϕU(y,R j)(Ri,R′j,RN\{i, j}) (18)

and

ϕU(y,R′j)
(Ri,R′j,RN\{i, j}) ≥ ϕU(y,R′j)

(Ri,R j,RN\{i, j}). (19)

As ϕ is unanimous and strategy-proof, by Theorem 4.1 it follows that ϕ satisfies Pareto optimality. By

Pareto optimality and our assumption on R j, ϕ[1,τ−(R j))(Ri,R j,RN\{i, j}) = ϕ[1,τ−(R j))(Ri,R′j,RN\{i, j})

= 0. This together with (18) implies

ϕU(y,R′j)
(Ri,R′j,RN\{i, j}) ≤ ϕU(y,R′j)

(Ri,R j,RN\{i, j}) (20)

Now, (19) and (20) imply

ϕU(y,R′j)
(Ri,R′j,RN\{i, j}) = ϕU(y,R′j)

(Ri,R j,RN\{i, j}). (21)

Because y > τ+(R′j), using similar argument for y−1, we have

ϕU(y−1,R′j)
(Ri,R j,RN\{i, j}) = ϕU(y−1,R′j)

(Ri,R′j,RN\{i, j}). (22)

Subtracting (22) from (21), we have ϕy(Ri,R j,RN\{i, j}) = ϕy(Ri,R′j,RN\{i, j}). This completes the proof of

the claim. �

Now we complete the proof of the theorem. Let k ∈ N be such that τ+(Rk) ≤ τ+(Rl) for all l ∈

N \ { j}. Let R′k ∈ D be such that τ+(R′k) = τ+(Ri) and R′k is left single-plateaued. Using similar

logic as for the proof of Claim C.1, we have ϕy(Ri,R′j,Rk,RN\{i, j,k}) = ϕy(Ri,R′j,R
′
k,RN\{i, j,k}) and

ϕy(Ri,R′j,Rk,RN\{i, j,k}) = ϕy(Ri,R′j,R
′
k,RN\{i, j,k}) for all y > τ+(Ri).

Continuing in this manner, we construct profiles (Ri,R′N\i) and R′N such that for all l ∈ N \ i, τ+(R′l) =

τ+(Ri) if τ+(Rl) < τ+(Ri) and R′l = Rl otherwise and ϕy(Ri,R′N\i) = ϕy(Ri,RN\i) and ϕy(R′i,R
′
N\i) =

ϕy(R′i,RN\i) for all y > τ+(Ri).

By Pareto optimality, ϕz(Ri,R′N\i) = ϕz(R′i,R
′
N\i) = 0 for all z < τ+(Ri). Also, by strategy-proofness of

ϕ , ϕτ(Ri)(Ri,R′N\i) = ϕτ(Ri)(R
′
i,R
′
N\i). Since ϕx(Ri,RN\i) < ϕx(R′i,RN\i), by Claim C.1 we have
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ϕU(x,Ri)(Ri,R′N\i)< ϕU(x,Ri)(R
′
i,R
′
N\i). This means i manipulates at (Ri,R′N\i) via R′i, which contradicts that

ϕ is strategy-proof. �

D. PROOF OF THEOREM 4.3

Proof. (If part) Let D be the (κ1,κ2)-single-plateaued domain and let ϕ : Dn→ ∆A be an RSCF satisfying

generalized uncompromisingness. We show that ϕ is strategy-proof. Take RN ∈Dn and R′i ∈D . By Remark

4.3, ϕ is almost plateau-only. Thus, if τ(Ri) = τ(R′i), ϕU(x,Ri)(Ri,RN\i) = ϕU(x,Ri)(R
′
i,RN\i) for all x ∈ A.

We distinguish the following cases based on the relative position of τ(Ri) and τ(R′i) to complete the proof.

Case 1. Suppose τ−(Ri) < τ−(R′i) and τ+(Ri) < τ+(R′i)

1 mτ−(Ri) τ+(Ri)τ−(R′i) τ+(R′i)

Figure 2: τ−(Ri) < τ−(R′i) and τ+(Ri) < τ+(R′i).

By Remark 4.1,

ϕx(Ri,RN\i) = ϕx(R′i,RN\i) for all x /∈ [τ−(Ri),τ+(R′i)]. (23)

Because S is single-plateaued , for all y ∈ A, there are y′ ≤ τ−(Ri) and y′′ ≥ τ+(Ri) such that U(y,Ri) =

[y′,τ−(Ri)− 1]∪ [τ−(Ri),y′′], where [y′,τ−(Ri)− 1] = /0 when y′ = τ−(Ri). This together with (23),

implies that to show ϕ is strategy-proof it is sufficient to show ϕ[τ−(Ri),y](Ri,RN\i) ≥ ϕ[τ−(Ri),y](R
′
i,RN\i)

for all y ∈ [τ+(Ri),τ+(R′i)].

Take y = τ+(Ri). It follows from (23) that ϕ[τ−(Ri),τ+(R′i)]
(Ri,RN\i) = ϕ[τ−(Ri),τ+(R′i)]

(R′i,RN\i). Now,

take y ∈ [τ+(Ri),τ+(R′i)−1]. As τ+(Ri)< y+ 1 and τ+(R′i)≥ y+ 1, by condition (ii) of Definition 4.6,

we have

ϕ[y+1,m](Ri,RN\i) ≤ ϕ[y+1,m](R
′
i,RN\i). (24)

By condition (i) of Definition 4.6, ϕ[τ−(Ri),m](Ri,RN\i) = ϕ[τ−(Ri),m](R
′
i,RN\i). This together with (24),

implies

ϕ[τ−(Ri),y](Ri,RN\i) ≥ ϕ[τ−(Ri),y](R
′
i,RN\i).

Case 2. Suppose τ−(Ri) > τ−(R′i) and τ+(Ri) > τ+(R′i).

This case is very similar to Case 1, however for the sake of completeness we provide a formal proof. Take
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1 mτ−(Ri) τ+(Ri)τ−(R′i) τ+(R′i)

Figure 3: τ−(Ri) > τ−(R′i) and τ+(Ri) > τ+(R′i).

x /∈ [τ−(R′i)+ 1,τ+(Ri)]. By Condition (i) of Definition 4.6, we have

ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i). (25)

Using similar logic as in Case 1, to show ϕ is strategy-proof, it is sufficient to show ϕ[y,τ+(Ri)](Ri,RN\i)

≥ ϕ[y,τ+(Ri)](R
′
i,RN\i) for all y ∈ [τ−(R′i),τ−(Ri)]. First, take y = τ−(R′i). By Condition (i) of Definition

4.6, it follows that ϕ[τ−(R′i),τ
+(Ri)](Ri,RN\i) = ϕ[τ−(R′i),τ

+(Ri)](R
′
i,RN\i). Next, take y∈ [τ−(R′i)+1,τ−(Ri)].

As τ−(Ri) ≥ y and τ−(R′i) < y, by Condition (ii) of Definition 4.6, we have

ϕ[y,m](Ri,RN\i) ≥ ϕ[y,m](R
′
i,RN\i). (26)

Taking x = τ+(Ri)+ 1 in (25) and subtracting it from (26), we get

ϕ[y,τ+(Ri)](Ri,RN\i) ≥ ϕ[y,τ+(Ri)](R
′
i,RN\i).

Case 3. Suppose τ−(Ri) ≥ τ−(R′i) and τ+(Ri) ≤ τ+(R′i).

The proof for this case follows by combining the arguments in Case 1 and Case 2. For the sake of

completeness, we provide a formal proof here.

1 mτ−(Ri) τ+(Ri)τ−(R′i) τ+(R′i)

Figure 4: τ−(Ri) ≥ τ−(R′i) and τ+(Ri) ≤ τ+(R′i).

Case 4. Suppose τ−(Ri) ≤ τ−(R′i) and τ+(Ri) ≥ τ+(R′i).

By Remark 4.1, ϕx(Ri,RN\i) = ϕx(R′i,RN\i) for all x /∈ τ(Ri). Therefore, agent i cannot manipulate at

(Ri,RN\i) via R′i.

�
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1 mτ−(Ri) τ+(Ri)τ−(R′i) τ+(R′i)

Figure 5: τ−(Ri) ≤ τ−(R′i) and τ+(Ri) ≥ τ+(R′i).

E. PROOF OF THEOEREM 4.4

Proof. “If” part of the theorem follows from Theorem 4.3. We proceed to prove the “only if” part. Let ϕ :

Dn→ ∆A be a strategy-proof and unanimous RSCF. We show ϕ satisfies generalized uncompromisingness.

Take i ∈ N and Ri,R′i ∈D with τ+(Ri) < τ+(R′i), RN\i ∈Dn−1, and x ∈ A.

We show that ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i) if max{τ+(Ri),τ+(R′i)}< x or if

min{τ−(Ri),τ−(R′i)} ≥ x. Suppose max{τ+(Ri),τ+(R′i)} < x. In view of Theorem 4.2, we assume

both Ri,R′i to be left single-plateaued. By strategy-proofness, ϕU(x−1,Ri)(Ri,RN\i) ≥ ϕU(x−1,Ri)(R
′
i,RN\i)

and ϕU(x−1,R′i)
(R′i,RN\i) ≥ ϕU(x−1,R′i)

(Ri,RN\i). However, since both Ri and R′i are left single-plateaued,

U(x−1,Ri) =U(x−1,R′i) = [1,x−1]. Therefore, ϕ[x,m](R
′
i,RN\i) = ϕ[x,m](Ri,RN\i).

For the case where min{τ−(Ri),τ−(R′i)} ≥ x, by means of Theorem 4.2 we can assume both Ri and R′i

to be right single-plateaued. Then ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i) follows by using similar argument as

above.

Now we show (ii) in Definition 4.6. Suppose τ+(Ri) < x ≤ τ+(R′i). Since x > τ+(Ri) in view of

Theorem 4.2 , we assume Ri to be left single-plateaued. By strategy-proofness, ϕU(x−1,Ri)(Ri,RN\i) ≥

ϕU(x−1,Ri)(R
′
i,RN\i). However, as Ri is a left single-plateaued preference, U(x−1,Ri) = [1,x−1]. This

means ϕ[x,m](Ri,RN\i) ≤ ϕ[x,m](R
′
i,RN\i).

Suppose τ−(Ri) < x ≤ τ−(R′i). Since x ≤ τ−(R′i) in view of Theorem 4.2, without loss of generality

we assume R′i to be right single-plateaued. Then, U(x−1,Ri) = [x,m]. By strategy-proofness, this means

ϕ[x,m](R
′
i,RN\i) ≥ ϕ[x,m](Ri,RN\i) which completes the proof. �

F. PROOF OF THEOREM 4.5

Proof. (If part) In Section 4.5, we introduce a generalization of random plateau rules which we call

generalized k-random plateau rules. We show those rules to be unanimous and strategy-proof. If part of the

theorem follows from that.

(Only-if part) Suppose an RSCF ϕ : D2 → ∆A is unanimous and strategy-proof. We show that ϕ is a

random plateau rule. Condition (i) of Definition 4.7 follows from unanimity of ϕ .
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Consider a preference profile RN ∈D2 with τ+(R1) < τ−(R2). It follows from Theorem 4.1 that ϕ is

Pareto optimal. By means of Pareto optimality, we have ϕx(RN) = 0 for all x /∈ [τ+(R1),τ−(R2)]. We

prcoceed to show ϕx(RN) = β2[x,m] for some β2 ∈ ∆A where x ∈ A such that τ+(R1) < x ≤ τ−(R2).

Let R̄N ∈ D2 be such that τ(R̄1) = [1,κ1] and τ(R̄2) = [m−κ1 + 1,m]. Define ϕ(R̄N) := β2. Consider

the profile (R1, R̄2). Since τ+(R1) < x, by strategy-proofness, ϕ[x,m](R1, R̄2) = β2[x,m]. Again, since

x < τ−(R2), ϕ[x,m](R1,R2) = β2[x,m]. This proves Condition (ii) of Definition 4.7. Condition (iii) of

Definition 4.7 can be proved with a similar argument. �

G. PROOF OF THEOREM 4.6

Proof. Let k ∈ {0, . . . ,κ1− 1} and let (βS)S⊆N be a collection of monotonic parameters. Suppose ϕ :

Dn→ ∆A is a k-random plateau rule with respect to (βS)S⊆N . We show that ϕ is unanimous and strategy-

proof. Unanimity of ϕ follows from Condition (i) of Definition 4.9. To show that ϕ is strategy-proof, by

Theorem 4.3, it is enough to show that it satisfies generalized uncompromisingness. Consider Ri,R′i ∈Di

and RN\{i} ∈ Dn−1. Suppose x ∈ A is such that x ≤ min{τ−(Ri),τ−(R′i)}. Let S ⊆ N be such that

i ∈ S if and only if τ−(Ri) ≥ x− k and τ+(Ri) ≥ x and let S′ ⊆ N be such that i ∈ S′ if and only if

τ−(R′i) ≥ x− k and τ+(R′i) ≥ x. Since, x ≤ min{τ−(Ri),τ−(R′i)}, we have S = S′. By the definition

of ϕ , ϕ[x,m](Ri,RN\{i}) = βS[x,m]. One can similarly show that ϕ[x,m](Ri,RN\{i}) = ϕ[x,m](R
′
i,RN\{i})

where x ∈ A is such that x > max{τ+(Ri),τ+(R′i)}. Now consider x ∈ A such that τ+(Ri) < x≤ τ+(R′i).

Let S ⊆ N be such that i ∈ S if and only if τ−(Ri) ≥ x− k and τ+(Ri) ≥ x and let S′ ⊆ N be such

that i ∈ S′ if and only if τ−(R′i) ≥ x− k and τ+(R′i) ≥ x. Because τ+(Ri) < x ≤ τ+(R′i), S ⊆ S′. By the

definition of ϕ , ϕ[x,m](Ri,RN\{i}) = βS[x,m] and ϕ[x,m](R
′
i,RN\{i}) = βS′ [x,m]. By the definition of (βS)S⊆N ,

βS[x,m] ≤ βS′ [x,m], which means ϕ[x,m](Ri,RN\{i}) ≤ ϕ[x,m](R
′
i,RN\{i}). Similarly, ϕ[x,m](Ri,RN\{i}) ≤

ϕ[x,m](R
′
i,RN\{i}) where x ∈ A is such that τ−(Ri) < x≤ τ−(R′i). �

H. PROOF OF THEOREM 4.7

Proof. (If part) Let D be a κ-single-plateaued domain for some κ ∈ {1, . . . ,m} and let ϕ : Dn→ ∆A be

a κ-plateaued rule . By definition ϕ is anonymous and plateau-only. To show that ϕ is strategy-proof,

in view of Theorem 4.3, it is enough to show that it satisfies generalized uncompromisingness. Consider

i ∈ N, Ri,R′i ∈ D with τ+(Ri) < τ+(R′i), RN\i ∈ Dn−1, and x ∈ A. First we show that Condition (i)

in Definition 4.6 holds. Consider the case where τ+(R′i) < x or τ−(Ri) ≥ x. As τ+(Ri) < τ+(R′i), it
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follows that when τ+(R′i) < x we have τ+(Ri) < x, and when τ−(Ri) ≥ x we have τ−(R′i) > x. This

implies nx
l (Ri,RN\i) = nx

l (R
′
i,RN\i) for all 0≤ l ≤ κ−1. By the definition of κ-plateaued rule , this yields

ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i), which proves that ϕ satisfies Condition (i) in Definition 4.6.

Next we show ϕ satisfies Condition (ii) in Definition 4.6. We distinguish the following two cases.

Case 1. Suppose τ+(Ri) < x≤ τ+(R′i).

By the definition of κ-plateaued rule, ϕ[x,m](Ri,RN\i) = β (n˜,x) and ϕ[x,m](R
′
i,RN\i) = β (n˜′,x), where for all

0≤ l ≤ κ−1, n˜l = nx
l (Ri,RN\i) and n˜′l = nx

l (R
′
i,RN\i). Since τ+(Ri)< x and τ+(R′i)≥ x, there must exist

0≤ l′ ≤ κ−1 such that nx
l (R
′
i,RN\i) = nx

l (Ri,RN\i)+ 1 for all 0≤ l ≤ l′, and nx
l (R
′
i,RN\i) = nx

l (Ri,RN\i)

for all l′ < l ≤ κ−1. This implies n˜′ = n˜⊕1. Therefore, by Condition (ii) of Definition 4.10, we have

β (n˜,x) ≤ β (n˜⊕1,x), and hence it follows that ϕ[x,m](R
′
i,RN\i) ≥ ϕ[x,m](Ri,RN\i).

Case 2. Suppose τ−(Ri) < x≤ τ−(R′i).

By the definition of κ-plateaued rule, ϕ[x,m](Ri,RN\i) = β (n˜,x) and ϕ[x,m](R
′
i,RN\i) = β (n˜′,x), where for all

0≤ l ≤ κ−1, n˜l = nx
l (Ri,RN\i) and n˜′l = nx

l (R
′
i,RN\i). If τ+(Ri)< x, then nx

l (R
′
i,RN\i) = nx

l (Ri,RN\i)+1

for all 0≤ l ≤ κ−1. However, if x≤ τ+(Ri)< x+κ−1, then there must exist l′ such that nx
l (R
′
i,RN\i) =

nx
l (Ri,RN\i) for all 0≤ l ≤ l′ and nx

l (R
′
i,RN\i) = nx

l (Ri,RN\i)+1 for all l′ < l ≤ κ−1. In both these cases,

n˜′ = n˜⊕1, and hence by using Condition (ii) of Definition 4.10, we have ϕ[x,m](R
′
i,RN\i)≥ ϕ[x,m](Ri,RNx\i).

(Only-if part) Let ϕ be a strategy-proof, anonymous, and plateau-only RSCF on Dn. We show that it is a

κ-plateaued rule.

Lemma H.1. Let x ∈ A and RN ,R′N ∈ Dn be such that nx
l (RN) = nx

l (R
′
N) for all 0 ≤ l ≤ κ − 1. Then,

ϕ[x,m](RN) = ϕ[x,m](R
′
N).

Proof. Note that for all R̄N ∈ {RN ,R′N}, |{i ∈ N | τ+(R̄i) = x+ l}| = nx
l (R̄N)−nx

l+1(R̄N) for all 0≤ l ≤

κ−2 and |{i∈N | τ+(R̄i)< x}|= n−nx
0(R̄N) . Because nx

l (RN) = nx
l (R
′
N) for all 0≤ l ≤ κ−1, this means

|{i∈N | τ+(Ri) = x+ l}|= |{i∈N | τ+(R′i) = x+ l}| for all 0≤ l ≤ κ−2, |{i∈N | τ−(Ri)≥ x}|= |{i∈

N | τ−(R′i) ≥ x}| and |{i ∈ N | τ+(Ri) < x}|= |{i ∈ N | R′i(1) < x}| . Let nl = |{i ∈ N | τ+(Ri) = x+ l}|

for all 0≤ l ≤ κ−2. Since ϕ is anonymous, assume without loss of generality that

(i) {i ∈ N | τ+(Ri) = x+ l}= {i ∈ N | τ+(R′i) = x+ l}= {isl−1 + 1, . . . , isl}, where for all 0≤ l ≤ κ−2,

sl = n0 + . . .+ nl and is−1 = 0, and

(ii) for all i ∈ N \ {isκ−2 , . . . ,1}, either τ+(Ri),τ+(R′i) < x or τ−(Ri),τ−(R′i) ≥ x. In view of this, it is

enough to show that ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i) for all (Ri,RN\i), (R′i,RN\i) ∈ S such that either

τ+(Ri),τ+(R′i) < x or τ−(Ri),τ−(Ri) ≥ x. Suppose τ+(Ri),τ+(R′i) < x. Since ϕ is plateau-only, assume

without loss of generality that both Ri and R′i are left single-plateaued. This means U(x− 1,Ri) =

32



U(x− 1,R′i) = [1,x− 1]. Now, by straightforward application of strategy-proofness, it follows that

ϕ[1,x−1](Ri,RN\i) = ϕ[1,x−1](R
′
i,RN\i). Thus, ϕ[x,m](Ri,RN\i) = ϕ[x,m](R

′
i,RN\i).

Next, suppose τ−(Ri),τ−(Ri) ≥ x. Since ϕ is plateau-only, assume without loss of generality that both

Ri and R′i are right single-plateaued. This means U(x,Ri) = U(x,R′i) = [x,m]. Now, by straightforward

application of strategy-proofness, it follows that ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i). This completes the

proof of the lemma. �

In view of Lemma H.1, for all (n˜,x) ∈ F (κ), define β (n˜,x) = ϕ[x,m](RN) where RN is such that

nx
l (Ri,RN\i) = n˜l for all 0 ≤ l ≤ κ − 1. In what follows we show that the parameters β s are plateau

parameters.

We show that (β (n˜,x)) satisfies Condition (ii) in Definition 4.10. In view of Lemma H.1, it is

enough to show that ϕ[x,m](Ri,RN\i)≥ ϕ[x,m](R
′
i,RN\i) where (Ri,RN\i), (R′i,RN\i) ∈Dn are such that either[

τ+(Ri) < x and τ+(R′i) ≥ x
]

or
[
τ−(Ri) ≥ x and x ≤ τ+(R′i) < x+ κ − 1

]
. First we consider the case

where τ+(Ri) < x and τ+(R′i) ≥ x. In view of Lemma H.1 , it is enough to show that ϕ[x,m](Ri,RN\i) ≤

ϕ[x,m](R
′
i,RN\i) where (Ri,RN\i), (R′i,RN\i) ∈ S are such that τ+(Ri) < x and τ+(R′i) ≥ x. Since ϕ is

plateau-only, assume without loss of generality that Ri is left single-plateaued. Then U(x−1,Ri) = [1,x−

1]. By strategy-proofness, ϕU(x−1,Ri)(Ri,RN\i) ≥ ϕU(x−1,Ri)(R
′
i,RN\i), which means ϕ[x,m](Ri,RN\i) ≤

ϕ[x,m](R
′
i,RN\i). Next we consider the case where τ−(Ri) ≥ x and x ≤ τ+(R′i) < x+ κ − 1. Next we

show that (β (n˜,x)) satisfies Condition (ii) in Definition 4.10. In view of Lemma H.1, it is enough to

show that ϕ[x,m](Ri,RN\i) ≥ ϕ[x,m](R
′
i,RN\i) where (Ri,RN\i), (R′i,RN\i) ∈ Dn are such that τ−(Ri) ≥ x

and x ≤ τ+(R′i) < x+ κ − 1. Since ϕ is plateau-only, assume without loss of generality that Ri is right

single-plateaued. Then U(x,Ri) = [x,m]. By strategy-proofness, ϕU(x,Ri)(Ri,RN\i) ≥ ϕU(x,Ri)(R
′
i,RN\i),

which means ϕ[x,m](Ri,RN\i) ≥ ϕ[x,m](R
′
i,RN\i).

Finally, we show that {(β (n˜,x))(n˜,x)∈F (κ)} satisfies Condition (i) of Definition 4.10. Take n˜,n˜+ ∈ N˜ ,

RN ∈Dn and x∈ [3,m] such that nx
l (RN) = n˜l and n˜x−1

l (RN) = n˜+l for all 0≤ l ≤ κ−1. It is easy to see that

such a RN and x exist for every possible choice of n˜ and n˜+. Since ϕ is an RSCF, ϕ[x,m](RN)≤ ϕ[x−1,m](RN).

By the construction of (β (n˜,x))(n˜,x)∈F (κ), we have 0≤ β (n˜,x) ≤ β (n˜+,x−1) ≤ 1 for all n˜,n˜+ ∈ N˜ . �

I. PROOF OF COROLLARY 4.1

Proof. It remains to show that a κ-plateaued rule is unanimous if and only if it is based on a collection of

unanimous plateau parameters.
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(If part) Suppose {(β (n˜,x))(n˜,x)∈F (κ)} is unanimous and ϕ is a κ-plateaued rule with respect to

{(β (n˜,x))(n˜,x)∈F (κ)}. We show ϕ is unanimous.

Let RN ∈Dn be such that ∩i∈Nτ(Ri) 6= /0. Let ∩i∈Nτ(Ri) = [y,z]. Then, ny
0(RN) = n and ny

κ−1(RN)> 0

(see Figure 6 for details). Since n̂˜0 = n and n̂˜κ−1 > 0, by unanimity of plateau parameters, we have

β (n̂˜,y) = 1. Because ϕ[y,m](RN) = β (n̂˜,y), this means ϕ[y,m](RN) = 1. As ∩τ(Ri) = [y,z], nz+1
0 (RN) < n

and nz+1
κ−1(RN) = 0 (see Figure 6 for details). Since n̄˜0 < n and n̄˜κ−1 = 0, by unanimity of plateau parameters,

we have β (n̄˜,z+ 1) = 0. Because ϕ[z+1,m](RN) = β (n̄˜,z+ 1), this means ϕ[z+1,m](RN) = 0. So, we have

ϕ[y,z](RN) = 1.

(Only-if part) Let ϕ be a strategy-proof, plateau-only, anonymous and unanimous RSCF on Dn. We

show it is a κ-plateaued rule with respect to unanimous plateau parameters. By Theorem 4.8, ϕ is a

κ-plateaued rule. Let {(β (n˜,x))(n˜,x)∈F (κ)} be the plateau parameters of ϕ . We need to show that the

collection {(β (n˜,x))(n˜,x)∈F (κ)} is unanimous.

Since, ϕ is unanimous and strategy-proof, by Theorem 4.1, it is Pareto optimal. Take RN ∈ Dn and

x ∈ [2,m] such that nx
0(RN) = n and nx

κ−1(RN) > 0. Since, nx
0(RN) = n, mini∈N(τ+(Ri))≥ x. Also, since

nx
κ−1(RN) > 0, there must exist î ∈ N such that τ−(Rî) ≥ x. Take y < x. As mini∈N(τ+(Ri))≥ x, xRiy for

all i ∈ N. Moreover, because τ−(Rî) ≥ x, xPîy. By Pareto optimality of ϕ , ϕy(RN) = 0. Since, y < x is

arbitrary, this means ϕ[x,m](RN) = 1. Because ϕ[x,m](RN) = β (n˜,x) where (n˜,x) is such that n˜0 = n and

n˜κ−1 > 0, it follows that β (n˜,x) = 1.

Now take RN ∈ Dn such that nx
0 < n and nx

κ−1 = 0. Since nx
0 < n, this means there exists ī ∈ N

such that τ+(Rī) < x. Moreover, as nx
κ−1 = 0, mini∈N τ−(Ri) < x. Take y ≥ x. As mini∈N τ−(Ri) <

x, mini∈N τ−(Ri)Riy for all i ∈ N. Also, as τ+(Rī) < x, this means τ+(Rī)Pīy. By Pareto optimality,

ϕy(RN) = 0. Since y≥ x is arbitrary, we have ϕ[x,m](RN) = 0. Because ϕ[x,m](RN) = β (n˜,x) where (n˜,x)

is such that n˜0 < n and n˜κ−1 = 0, it follows that β (n˜,x) = 0.

1 mz z+1y

Figure 6
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J. PROOF OF THEOREM 4.8

Proof. Let D be a (κ , κ̂)-single-plateaued domain for some κ ∈ {1, . . . ,m} and some κ̂ ≥ κ and let

ϕ : Dn→ ∆A be a κ-plateaued rule. By definition ϕ is anonymous and plateau-only. To show that ϕ is

strategy-proof, by Theorem 4.3, it is enough to show that it satisfies generalized uncompromisingness.

Consider i ∈ N, Ri,R′i ∈ D , RN\i ∈ Dn−1, and x ∈ A. First we show that Condition (i) in Definition 4.6

holds. We distinguish the following two cases.

Case 1. Suppose x≤min{τ−(Ri),τ−(R′i)}.

As D is a (κ , κ̂)-single-plateaued domain, |τ(Ri)| ≥ κ and |τ(R′i)| ≥ κ . This implies nx
l (Ri,RN\i) =

nx
l (R
′
i,RN\i) for all 0 ≤ l ≤ κ − 1. By the definition of κ-plateaued rule, this yields ϕ[x,m](Ri,RN\i) =

ϕ[x,m](R
′
i,RN\i).

Case 2. Suppose max{τ+(Ri),τ+(R′i)}< x.

This implies nx
l (Ri,RN\i) = nx

l (R
′
i,RN\i) for all 0≤ l ≤ κ−1. By the definition of κ-plateaued rule, this

yields ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i).

Next we show ϕ satisfies Condition (ii) in Definition 4.6. We distinguish the following two cases.

Case 1. Suppose τ+(Ri) < x≤ τ+(R′i).

By the definition of κ-plateaued rule, ϕ[x,m](Ri,RN\i) = β (n˜,x) and ϕ[x,m](R
′
i,RN\i) = β (n˜′,x), where for all

0≤ l ≤ κ−1, n˜l = nx
l (Ri,RN\i) and n˜′l = nx

l (R
′
i,RN\i). Since τ+(Ri)< x and τ+(R′i)≥ x, there must exist

0≤ l′ ≤ κ−1 such that nx
l (R
′
i,RN\i) = nx

l (Ri,RN\i)+ 1 for all 0≤ l ≤ l′, and nx
l (R
′
i,RN\i) = nx

l (Ri,RN\i)

for all l′ < l ≤ κ−1. This implies n˜′ = n˜⊕1. Therefore, by Condition (ii) of Definition 4.10, we have

β (n˜,x) ≤ β (n˜⊕1,x), and hence it follows that ϕ[x,m](R
′
i,RN\i) ≥ ϕ[x,m](Ri,RN\i).

Case 2. Suppose τ−(Ri) < x≤ τ−(R′i).

By the definition of κ-plateaued rule, ϕ[x,m](Ri,RN\i) = β (n˜,x) and ϕ[x,m](R
′
i,RN\i) = β (n˜′,x), where for all

0≤ l ≤ κ−1, n˜l = nx
l (Ri,RN\i) and n˜′l = nx

l (R
′
i,RN\i). If τ+(Ri)< x, then nx

l (R
′
i,RN\i) = nx

l (Ri,RN\i)+1

for all 0≤ l ≤ κ−1. However, if x≤ τ+(Ri)< x+κ−1, then there must exist l′ such that nx
l (R
′
i,RN\i) =

nx
l (Ri,RN\i) for all 0≤ l ≤ l′ and nx

l (R
′
i,RN\i) = nx

l (Ri,RN\i)+1 for all l′ < l ≤ κ−1. In both these cases,

n˜′ = n˜⊕1, and hence by using Condition (ii) of Definition 4.10, we have ϕ[x,m](R
′
i,RN\i)≥ ϕ[x,m](Ri,RNx\i).

If τ+(Ri) ≥ x+κ−1, nx
l (Ri,RN\i) = nx

l (R
′
i,RN\i) for all 0≤ l ≤ κ−1. By the definition of κ-plateaued

rule, this yields ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i).

�
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